Skip to main content
Log in

The pyrolysis study of polybutadiene rubber under different structural and process parameters: comparison with polyvinyl chloride degradation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of the initial cross-link, as well as process parameters, such as heating rate and temperature, was investigated on the pyrolysis of poly butadiene rubber (PBR) using a semi-batch stirred reactor and a TG equipment. To better evaluate the degradation mechanisms of polybutadiene rubber, the degradation of polyvinyl chloride was also investigated at similar heating rates using TG instrument. The results showed that due to the production of double bonds after HCl release, the pyrolysis of polyvinyl chloride proceeds similar to polybutadiene rubber. It is to note that in PBR pyrolysis, the degradation mechanisms were completely different under fast and slow pyrolysis, i.e., whereas slow pyrolysis follows a cross-linking mechanism and Diels–Alder reactions leading to cyclic products, fast pyrolysis promotes a chain scission mechanism, and therefore more aliphatic products are obtained. While PVC degradation involves three stages of HCl release, cross-link networks creation, and chain scission, respectively, with increasing heating rate, the intermediate stage is almost eliminated and PVC pyrolysis shows two obvious stages. Furthermore, as the cross-link of PBR was more severe, the liquid production was higher and the process time was longer, which significantly promoted char production. Moreover, the TG results of PBR and PVC are evidence that the ratio of cross-link and Diels–Alder over chain scission mechanism decreases as temperature and heating rate are increased. Thus, an increase in heating rate, and so operation under relatively fast pyrolysis conditions (above 90 K min−1), leads to PBR degradation at lower temperatures, which is evidence of the effect polymer structure has on the degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srivastava VK, Maiti M, Basak GC, Jasra RV. Role of catalysis in sustainable production of synthetic elastomers. J Chem Sci. 2014;126:415–7.

    CAS  Google Scholar 

  2. Yazdani E, Hashemabadi SH, Taghizadeh A. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Manag. 2019;85:195–201.

    CAS  PubMed  Google Scholar 

  3. Doğan-Sağlamtimur N, Bilgil A, Güven A, Ötgün H, Yıldırım ED, Arıcan B. Producing of qualified oil and carbon black from waste tyres and pet bottles in a newly designed pyrolysis reactor. J Therm Anal Calorim. 2019;135:3339–51.

    Google Scholar 

  4. Galvagno S, Casu S, Martino M, Di Palma E, Portofino S. Thermal and kinetic study of tyre waste pyrolysis via TG-FTIR-MS analysis. J Therm Anal Calorim. 2007;88:507–14.

    CAS  Google Scholar 

  5. Abbas-Abadi MS, Jalali A, Rostami MR, Haghighi MN, Farhadi A. The atmospheric, vacuum and pressurized pyrolysis of used bleaching soils along with polymeric wastes to reach the valuable and economical fuels. J Clean Prod. 2020;255:120328.

    CAS  Google Scholar 

  6. Martinez JD, Murillo R, Garcia T, Veses A. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor. J Hazard Mater. 2013;261:637–45.

    CAS  PubMed  Google Scholar 

  7. Mikulova Z, Sedenkova I, Matejova L, Vecer M, Dombek V. Study of carbon black obtained by pyrolysis of waste scrap tyres. J Therm Anal Calorim. 2013;111:1475–81.

    CAS  Google Scholar 

  8. Savage PE. Mechanisms and kinetics models for hydrocarbon pyrolysis. J Anal Appl Pyrolysis. 2000;54:109–26.

    CAS  Google Scholar 

  9. Zahir Hussain A, Santhoshkumar A, Ramanathan A. Assessment of pyrolysis waste engine oil as an alternative fuel source for diesel engine. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09516-y.

    Article  Google Scholar 

  10. Fadda G, Chebeir J, Salas SD, Romagnoli JA. Joint dynamic data reconciliation/parameter estimation: application to an industrial pyrolysis reactor. Appl Therm Eng. 2019;158:113726.

    CAS  Google Scholar 

  11. Abbas-Abadi MS, Haghighi MN. The consideration of different effective zeolite based catalysts and heating rate on the pyrolysis of styrene butadiene rubber (SBR) in a stirred reactor. Energy Fuels. 2017;31:12358–63.

    Google Scholar 

  12. Brazier DW, Schwartz NV. The effect of heating rate on the thermal degradation of polybutadiene. J Appl Polym Sci. 1978;22:113–24.

    CAS  Google Scholar 

  13. Lopez G, Aguado R, Olazar M, Arabiourrutia M, Bilbao J. Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Manag. 2009;29:2649–55.

    CAS  PubMed  Google Scholar 

  14. Abbas-Abadi MS. The effect of process and structural parameters on the stability, thermo-mechanical and thermal degradation of polymers with hydrocarbon skeleton containing PE, PP, PS, PVC, NR, PBR and SBR. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09344-0.

    Article  Google Scholar 

  15. Castro A, Soares D, Vilarinho C, Castro F. Kinetics of thermal de-chlorination of PVC under pyrolytic conditions. Waste Manag. 2012;32:847–51.

    CAS  PubMed  Google Scholar 

  16. Yu J, Sun L, Ma C, Qiao Y, Yao H. Thermal degradation of PVC: a review. Waste Manag. 2016;48:300–14.

    CAS  PubMed  Google Scholar 

  17. Wang Z, Xie T, Ning X, Liu Y, Wang J. Thermal degradation kinetics study of polyvinyl chloride (PVC) sheath for new and aged cables. Waste Manag. 2019;9:146–53.

    Google Scholar 

  18. Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DCW, Hou D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod. 2018;174:977–87.

    CAS  Google Scholar 

  19. Tamri Z, Yazdi AV, Haghighi MN, Abbas-Abadi MS, Heidarinasab A. The effect of temperature, heating rate, initial cross-linking and zeolitic catalysts as key process and structural parameters on the degradation of natural rubber (NR) to produce the valuable hydrocarbons. J Anal Appl Pyrolysis. 2018;134:35–42.

    CAS  Google Scholar 

  20. Gaurh P, Pramanik H. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst. Waste Manag. 2018;7:114–30.

    Google Scholar 

  21. Salmasi SS, Abbas-Abadi MS, Haghighi MN, Abedini H. The effect of different zeolite based catalysts on the pyrolysis of poly butadiene rubber. Fuel. 2015;160:544–8.

    CAS  Google Scholar 

  22. Liu S, Yu J, Bikane K, Chen T, Ma C, Wang B, Sun L. Rubber pyrolysis: kinetic modeling and vulcanization effects. Energy. 2018;155:215–25.

    CAS  Google Scholar 

  23. Lin J-P, Chang C-Y, Wu C-H, Shih S-M. Thermal degradation kinetics of polybutadiene rubber. Polym Degrad Stab. 1996;53:295–300.

    CAS  Google Scholar 

  24. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33.

    CAS  Google Scholar 

  25. Amutio M, Lopez G, Alvarez J, Moreira R, Duarte G, Nunes J, Olazar M, Bilbao J. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem Eng Res Des. 2013;91:2682–90.

    CAS  Google Scholar 

  26. Jayaraman K, Kok MV, Gokalp I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS. Appl Therm Eng. 2017;125:1446–55.

    CAS  Google Scholar 

  27. Khiari B, Kordoghli S, Mihoubi D, Zagrouba F, Tazerout M. Modeling kinetics and transport phenomena during multi-stage tire wastes pyrolysis using Comsol. Waste Manag. 2018;78:337–45.

    CAS  PubMed  Google Scholar 

  28. Menares T, Herrera J, Romero R, Osorio P, Arteaga-Pérez LE. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Manag. 2020;102:21–9.

    CAS  PubMed  Google Scholar 

  29. Mkhize NM, Danon B, van der Gryp P, Görgens JF. Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chem Eng Res Des. 2019;152:363–71.

    CAS  Google Scholar 

  30. Abbas-Abadi MS, Haghighi MN, Yeganeh H, Bozorgi B. The effect of melt flow index, melt flow rate, and particle size on the thermal degradation of commercial high density polyethylene powder. J Therm Anal Calorim. 2013;114:1333–9.

    Google Scholar 

  31. Abbas-Abadi MS, Haghighi MN, Yeganeh H. Effect of the melt flow index and melt flow rate on the thermal degradation kinetics of commercial polyolefins. J Appl Polym Sci. 2012;126:1739–45.

    CAS  Google Scholar 

  32. Zhang Y, Wu C, Nahil MA, Williams P. High-value resource recovery products from waste tyres. Proc Inst Civ Eng Waste Res Manag. 2016;169:137–45.

    Google Scholar 

  33. Danon B, Mkhize NM, van der Gryp P, Görgens JF. Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochim Acta. 2015;601:45–53.

    CAS  Google Scholar 

  34. Quek A, Balasubramanian R. Mathematical modeling of rubber tire pyrolysis. J Anal Appl Pyrolysis. 2012;95:1–13.

    CAS  Google Scholar 

  35. Miguel GS, Aguado J, Serrano DP, Escola JM. Thermal and catalytic conversion of used tyre rubber and its polymeric constituents using Py-GC/MS. Appl Catal B. 2006;64:209–19.

    Google Scholar 

  36. Lattimer RP. Pyrolysis field ionization mass spectrometry of hydrocarbon polymers. J Anal Appl Pyrolysis. 1997;39:115–27.

    CAS  Google Scholar 

  37. Martínez JD, Puy N, Murillo R, García T, Navarro MV, Mastral AM. Waste tyre pyrolysis—a review. Renew Sustain Energy Rev. 2013;23:179–213.

    Google Scholar 

  38. Lopez G, Alvarez J, Amutio M, Mkhize NM, Danon B, van der Gryp P, Görgens JF, Bilbao J, Olazar M. Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Convers Manag. 2017;142:523–32.

    CAS  Google Scholar 

  39. Abbas-Abadi MS, Haghighi MN, Yeganeh H. The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J Anal Appl Pyrolysis. 2012;95:198–204.

    CAS  Google Scholar 

  40. Abbas-Abadi MS, Haghighi MN, Yeganeh H, McDonald AG. Evaluation of pyrolysis process parameters on polypropylene degradation products. J Anal Appl Pyrolysis. 2014;109:272–7.

    CAS  Google Scholar 

  41. Alvarez J, Lopez G, Amutio M, Mkhize NM, Danon B, van der Gryp P, Görgens JF, Bilbao J, Olazar M. Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy. 2017;128:463–74.

    CAS  Google Scholar 

  42. Mkhize NM, Danon B, Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M, van der Gryp P, Görgens JF. Influence of reactor and condensation system design on tyre pyrolysis products yields. J Anal Appl Pyrolysis. 2019;143:104683.

    CAS  Google Scholar 

  43. Rathsack P, Riedewald F, Sousa-Gallagher M. Analysis of pyrolysis liquid obtained from whole tyre pyrolysis with molten zinc as the heat transfer media using comprehensive gas chromatography mass spectrometry. J Anal Appl Pyrolysis. 2015;116:49–57.

    CAS  Google Scholar 

  44. Ucar S, Karagoz S, Ozkan AR, Yanik J. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel. 2005;84:1884–92.

    CAS  Google Scholar 

  45. Chevalier JLE, Petrino PJ, Gaston-Bonhomme YH. Viscosity and density of some aliphatic, cyclic, and aromatic hydrocarbons binary liquid mixtures. Chem Eng Data. 1990;35:206–12.

    CAS  Google Scholar 

  46. Choi S-S, Han D-H. Pyrolysis paths of polybutadiene depending on pyrolysis temperature. Macromol Res. 2006;14:354–8.

    CAS  Google Scholar 

  47. Choi S-S. Characteristics of pyrolysis patterns of polybutadienes with different microstructures. J Anal Appl Pyrolysis. 2001;57:249–59.

    CAS  Google Scholar 

  48. Cheng Y-T, Huber GW. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chem. 2012;14:3114–25.

    CAS  Google Scholar 

  49. Marcilla A, Gomez A, Reyes-Labarta JA, Giner A. Catalytic pyrolysis of polypropylene using MCM-41: kinetic model. Polym Degrad Stab. 2003;80:233–40.

    CAS  Google Scholar 

  50. Lopez G, Alvarez J, Amutio M, Hooshdaran B, Cortazar M, Haghshenasfard M, Hosseini SH, Olazar M. Kinetic modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. Chem Eng J. 2019;373:677–86.

    CAS  Google Scholar 

  51. Gonzalez-Quiroga A, Reyniers PA, Kulkarni SR, Torregrosa MM, Perreault P, Heynderickx GJ, Van Geem KM, Marin GB. Design and cold flow testing of a gas–solid vortex reactor demonstration unit for biomass fast pyrolysis. Chem Eng J. 2017;329:198–210.

    CAS  Google Scholar 

  52. Han D, Yang X, Li R, Wu Y. Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. J Clean Prod. 2019;231:254–67.

    Google Scholar 

  53. Abbas-Abadi MS, Fathi M, Ghadiri M. Effect of different process parameters on the pyrolysis of iranian oak using a fixed bed reactor and TGA instrument. Energy Fuels. 2019;33:11226–34.

    Google Scholar 

  54. Gui B, Qiao Y, Wan D, Liu S, Han Z, Yao H, Xu M. Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc Combust Inst. 2013;34:2321–9.

    CAS  Google Scholar 

  55. Huang J, Li X, Zeng G, Cheng X, Tong H, Wang D. Thermal decomposition mechanisms of poly(vinyl chloride): a computational study. Waste Manag. 2018;7:483–96.

    Google Scholar 

  56. Kim S. Pyrolysis kinetics of waste PVC pipe. Waste Manag. 2001;21:609–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Seifali Abbas-Abadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas-Abadi, M.S., Van Geem, K.M., Alvarez, J. et al. The pyrolysis study of polybutadiene rubber under different structural and process parameters: comparison with polyvinyl chloride degradation. J Therm Anal Calorim 147, 1237–1249 (2022). https://doi.org/10.1007/s10973-020-10431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10431-5

Keywords

Navigation