Skip to main content
Log in

Burning of thermally thin polyethylene mixtures

Cone calorimeter study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The burning of polyethylene in the mixture with aluminium hydroxide, aluminium oxide, cellulose and Irganox 1010 has been examined by cone calorimeter under non-standard sizes of the sample. The time to ignition of pure polyethylene decreases with decreasing initial amount of polyethylene powder. The subtraction of the mass of water released from the total mass lost for polyethylene with aluminium hydroxide give the same values of effective heats of combustion as for pure polyethylene up to the load about 50 mass% of aluminium hydroxide. The mean heats of combustion determined from the cone calorimeter software are higher than those determined from the total oxygen consumed and mass lost multiplied by the factor 13.1. The additivity rule was found for effective heat of combustion and total smoke released for polyethylene with cellulose. The free radical scavenger Irganox 1010 does not show a significant effect on the flammability of polyethylene except for the increase of the total smoke released. The equation describing the heat release rate evolution in time has been proposed showing a good fit to the experimental runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Babrauskas V. Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984;8:81–95.

    Article  CAS  Google Scholar 

  2. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18:255–72.

    Article  CAS  Google Scholar 

  3. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4:61–5.

    Article  CAS  Google Scholar 

  4. Nussbaum RM, Östman BA-L. Larger specimen for determining rate of heat release in the cone calorimeter. Fire Mater. 1986;10:151–60.

    Article  CAS  Google Scholar 

  5. Redfern JP. Rate of heat release measurement using the cone calorimeter. J Therm Anal Calorim. 1989;35:1861–77.

    Article  CAS  Google Scholar 

  6. Janssens M. Piloted ignition of wood a review. Fire Mater. 1991;15:151–67.

    Article  CAS  Google Scholar 

  7. Babrauskas V. Related quantities (a) heat of combustion and potential heat. In: Babrauskas V, Grayson SJ editors. Heat Release in Fires, Chapter 8. London: E & FN Spon (Chapman & Hall); 1996.

  8. ISO 5660-1:2002. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method).

  9. ISO 5660-2:2002. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 2: smoke production rate (dynamic measurement).

  10. ISO/TR 5660-3:2003. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 3: guidance on measurement.

  11. Schartel B, Bartholmai M, Knoll U. Some comments on the use of cone calorimeter data. Polym Degrad Stab. 2005;88:540–7.

    Article  CAS  Google Scholar 

  12. Schartel B, Hull TR. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  13. Staggs JEJ, Whiteley RH. Modelling the combustion of solid-phase fuels in cone calorimeter experiments. Fire Mater. 1999;23:63–9.

    Article  CAS  Google Scholar 

  14. Patel P, Hull TR, Stec AA, Lyon RE. Influence of physical properties on polymer flammability in the cone calorimeter. Polym Adv Technol. 2011;22:1100–7.

    Article  CAS  Google Scholar 

  15. Hull TR, Price D, Liu Y, Wills CL, Brady J. An investigation into the decomposition and burning behaviour of EVA copolymer nanocomposites. Polym Degrad Stab. 2003;82:365–71.

    Article  CAS  Google Scholar 

  16. Xu Q, Majlingova A, Zachar M, Jin C, Jiang Y. Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers. J Therm Anal Calorim. 2012;110:65–70.

    Article  CAS  Google Scholar 

  17. Tsai K-C. Using cone calorimeter data for the prediction of upward flame spread rate. J Therm Anal Calorim. 2013;112:1601–6.

    Article  CAS  Google Scholar 

  18. Janowska G, Kucharska-Jastrzabek A, Rybinski P. Thermal stability, flammability and fire hazard of butadiene–acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103:1039–46.

    Article  CAS  Google Scholar 

  19. Lindholm J, Brink A, Hupa M. The influence of decreased sample size on cone calorimeter results. Fire Mater. 2012;36:63–73.

    Article  CAS  Google Scholar 

  20. Rychlý J, Rychlá L, Csomorová K. Characterisation of materials burning by a cone calorimeter: 1. Pure polymers. J Mater Sci Eng. 2012;A2:174–82.

    Google Scholar 

  21. Dorigato A, Pegoretti A, Frache A. Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim. 2012;109:863–73.

    Article  CAS  Google Scholar 

  22. Hull TR, Witkowski A, Hollinbery L. Fire retardant action of mineral fillers. Polym Degrad Stab. 2011;96:1462–9.

    Article  CAS  Google Scholar 

  23. Zarringhalam A, Saedi G. Fire retardation of polymers. Scientia Iranica. 2000;7:125–8.

    Google Scholar 

  24. Zarringhalam A, Rezaic MR, Mehrabzadeh M. Combustibility of polypropylene. Iran Polym J. 1997;6:121–6.

    Google Scholar 

Download references

Acknowledgements

This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions. Part II supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Rychlý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rychlý, J., Hudáková, M. & Rychlá, L. Burning of thermally thin polyethylene mixtures. J Therm Anal Calorim 115, 527–535 (2014). https://doi.org/10.1007/s10973-013-3305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3305-y

Keywords

Navigation