Skip to main content
Log in

Fire Retardant Electrically Conductive Composite Materials Based on Polyethylene

  • GENERAL-PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The article presents the results of research on electrically conductive hard-to-burn composite materials based on polyethylene, graphite, and some flame retardants. It is shown that optimal electrical conducting properties and the flammability rating (V0) in accordance with UL 94 test are achieved by modifying the graphite-containing composite material based on low-pressure polyethylene with ammonium polyphosphate and (or) aluminum hydroxide. It is shown that the percolation threshold of a composite material based on high-pressure polyethylene and graphite is observed at significantly higher values of the mass fraction of graphite. It is concluded that the reduction of the percolation threshold of polyethylene when filled with graphite is facilitated by an increase in the degree of crystallinity of the binder, and the formation of structured continuous conducting clusters in the composite material is observed at lower values of the mass fraction of the filler. As a result, the thermal conductivity and heat resistance of the composite material are increased owing to more efficient delocalization of the supplied heat. A number of electrically conductive hard-to-burn materials were obtained and characterized. These data allow us to directly adjust the values of the specific volume electrical resistance, physical and mechanical properties, heat resistance, and, to a certain extent, flame resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Markov, A.G. and Ivanova, I.A., Fire hazard of static electricity, Proc. 13th Int. Sci.-Pract. Conf. Dedicated to the Year of Safety Culture, Ivanovo, Russia, 2018, pp. 159–162. https://www.elibrary.ru/item.asp?id=38221693&

    Google Scholar 

  2. Blythe, E.R. and Bloor, D., Electrical Properties of Polymers, Cambridge: Cambridge Univ. Press, 2008, chaps. 6–7.

    Google Scholar 

  3. https://www.proektant.kz/content/52.html

  4. Ohsawa, A., Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry, J. Phys: Conf. Ser., 2011, vol. 301, art. ID 012033. https://doi.org/10.1088/1742-6596/301/1/012033

    Article  Google Scholar 

  5. Brevnov, P.N., Kirsankina, G.R., Zabolotnov, A.S., Krasheninnikov, V.G., Novokshonova, L.A., Monakhova, T.V., Lomakin, S.M., and Berlin A.A., The effect of graphite nanoslabs on thermal oxidative destruction of polyethylene, Polym. Sci., Ser. D, 2017, vol. 10, pp. 330–333. https://doi.org/10.1134/S1995421217040050

    Article  CAS  Google Scholar 

  6. Nesterov, A.A., Makarova, L.E., Moskalev, V.A., Vahrusheva, U.N., and Vedernikova, K.A., Electrical properties of composite materials based on natural graphite and polyethylene, Sovr. Probl. Nauki Obrazov., 2014, no. 6, p. 173. https://www.scienceeducation.ru/ ru/article/view?id=16161

  7. Sarikanat, M., Sever, K., Erbay, E., et al., Preparation and mechanical properties of graphite filled HDPE nanocomposites, Arch. Mater. Sci. Eng., 2011, vol. 50, no. 2, pp. 120–124.

    Google Scholar 

  8. Pandey, A.K., Singh, K., and Kar, K.K., Thermo-mechanical properties of graphite-reinforced high-density polyethylene composites and its structure-property corelationship, J. Compos. Mater., 2016, vol. 51, no. 12, pp. 1769–1782. https://doi.org/10.1177/0021998316683782

    Article  CAS  Google Scholar 

  9. Ogochukwu, U.K. and Nnarue, E.A., Increase in electrical and thermal conductivities of doped polymers dependent on their intrinsic properties; case study: Polymers [polystyrene, polyethylene, poly propylene, nylon 66], doped with graphite, IOSR J. Appl. Chem., 2013, vol. 6, no. 2, pp. 01–04. https://doi.org/10.9790/5736-0620104

  10. Sultana, W.Lv., Rohskopf, A., Kalaitzidou, K., and Henry, A., Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding, Express Polym. Lett., 2018, vol. 12, no. 3, pp. 215–226.

    Article  Google Scholar 

  11. Weil, E.D., Fire-protective and flame-retardant coatings. A state-of-the-art review, J. Fire Sci., 2011, vol. 29, pp. 259–296.

    Article  CAS  Google Scholar 

  12. Shaw, S.D., Blum, A., Weber, R., Kannan, K., Rich, D., Lucas, D., Koshland, C.P., and Hanson, S., Halogenated flame retardants: Do the fire safety benefits justify the risks? Rev. Environ. Health, 2010, vol. 25, no. 4, pp. 261–305.

    Article  CAS  Google Scholar 

  13. Bar, M., Alagirusamy, R., and Das, A., Flame retardant polymer composites, Fibers Polym., 2015, vol. 16, no. 4, pp. 705–717.

    Article  CAS  Google Scholar 

  14. Tian, N., Wen, X., Jiang, Z., and Gong, J., Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 10905–10915.

    Article  CAS  Google Scholar 

  15. Ai, L., Yang, L., Hu, J., Chen, S., Zeng, J., and Liu, P., Synergistic flame retardant effect of organic phosphorus-nitrogen and inorganic boron flame retardant on polyethylene, Polym. Eng. Sci., 2020, vol. 60, no. 2, pp. 414–422.

    Article  CAS  Google Scholar 

  16. Zheng, Z., Liu, S., Wang, B., Yang, T., Cui, X., and Wang, H., Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumescent flame-retarding polypropylene system, Polym. Compos., 2015, vol. 36, pp. 1606–1619.

    Article  CAS  Google Scholar 

  17. Zheng, Z., Liu, Y., Zhang, L., and Wang, H., Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene, J. Mater. Sci., 2016, vol. 51, pp. 5857–5871. https://doi.org/10.1007/s10853-016-9887-6

    Article  CAS  Google Scholar 

  18. Shartel, B., Wilkie, C.A., and Camino, G., Recommendation on the scientific approach to polymer flame retardancy: Part 2—Concepts, J. Fire Sci., 2017, vol. 35, pp. 3–20.

    Article  Google Scholar 

  19. Camino, B. and Camino, G., The chemical kinetics of the polymer combustion allows for inherent fire retardant synergism, Polym. Degrad. Stab., 2019, vol. 160, pp. 142–147.

    Article  CAS  Google Scholar 

  20. Jonscher, A.K., Universal Relaxation Law, London: Chelsea Dielectrics, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. M. Yevtushenko, G. P. Goncharuk, Y. A. Grigoriev, I. O. Kuchkina or V. G. Shevchenko.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yevtushenko, Y.M., Goncharuk, G.P., Grigoriev, Y.A. et al. Fire Retardant Electrically Conductive Composite Materials Based on Polyethylene. Inorg. Mater. Appl. Res. 12, 1314–1321 (2021). https://doi.org/10.1134/S2075113321050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050099

Keywords:

Navigation