Skip to main content
Log in

Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The differential scanning calorimetry (DSC) technique was demonstrated to be a reliable and fast tool for the investigation of the selective impregnation of archaeological woods with poly(ethylene) glycols (PEGs) mixtures. To this aim, waterlogged archaeological woods were impregnated by using aqueous mixtures of PEG 4000 and PEG 400 as well as mixtures of these polymers in the melt state. The efficiency of the treatments was also estimated by determining the total consolidant content entrapped into the cavities of degraded wood by means of DSC and thermogravimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pearson C. Conservation of marine archaeological objects. Michigan: Butterworths; 1987.

    Google Scholar 

  2. Hoffmann P. On the stabilization of waterlogged softwoods with polyethylene glycol (PEG). Four species from China and Korea. Holzforschung. 2009;44:87–93.

    Article  Google Scholar 

  3. Hoffmann P. On the stabilization of waterlogged oakwood with PEG. II. Designing a two-step treatment for multi-quality timbers. Stud Conserv. 1986;31:103–13.

    Article  CAS  Google Scholar 

  4. Hoffmann P. To be and to continue being a cog: the conservation of the Bremen Cog of 1380. Int J Naut Archaeol. 2001;30:129–40.

    Google Scholar 

  5. Cavallaro G, Donato DI, Lazzara G, Milioto S. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim. 2011;104:451–7.

    Article  CAS  Google Scholar 

  6. Hoffmann P, Singh A, Kim YS, Wi SG, Kim IJ, Schmitt U. The Bremen Cog of 1380—an electron microscopic study of its degraded wood before and after stabilization with PEG. Holzforschung. 2004;58:211–8.

    Article  CAS  Google Scholar 

  7. Donato D, Lazzara G, Milioto S. Thermogravimetric analysis. J Therm Anal Calorim. 2010;101:1085–91.

    Article  CAS  Google Scholar 

  8. Bugani S, Modugno F, Łucejko J, Giachi G, Cagno S, Cloetens P, Janssens K, Morselli L. Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography. Anal Bioanal Chem. 2009;395:1977–85.

    Article  CAS  Google Scholar 

  9. Terekhova IV, Romanova AO, Kumeev RS, Fedorov MV. Selective Na+/K+ effects on the formation of α-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest. J Phys Chem B. 2010;114:12607–13.

    Article  CAS  Google Scholar 

  10. De Lisi R, Lazzara G, Milioto S. Temperature-controlled poly(propylene) glycol hydrophobicity on the formation of inclusion complexes with modified cyclodextrins. A DSC and ITC study. Phys Chem Chem Phys. 2011;13:12571–7.

    Article  Google Scholar 

  11. De Lisi R, Giammona G, Lazzara G, Milioto S. Copolymers sensitive to temperature and pH in water and in water + oil mixtures: a DSC, ITC and volumetric study. J Colloid Interf Sci. 2011;354:749–57.

    Article  Google Scholar 

  12. Lazzara G, Milioto S, Muratore N. Solubilization of an organic solute in aqueous solutions of unimeric block copolymers and their mixtures with monomeric surfactant: volume, surface tension, differential scanning calorimetry, viscosity, and fluorescence spectroscopy studies. J Phys Chem B. 2008;112:5616–25.

    Article  CAS  Google Scholar 

  13. De Lisi R, Lazzara G. Aggregation in aqueous media of tri-block copolymers tuned by the molecular selectivity of cyclodextrins. J Therm Anal Calorim. 2009;97:797–803.

    Article  Google Scholar 

  14. Tiné M, Alderighi M, Duce C, Ghezzi L, Solaro R. Effect of temperature on self-assembly of an ionic tetrapeptide. J Therm Anal Calorim. 2011;103:75–80.

    Article  Google Scholar 

  15. Cavallaro G, Lazzara G, Milioto S. Aqueous phase/nanoparticles interface: hydroxypropyl cellulose adsorption and desorption triggered by temperature and inorganic salts. Soft Matter. 2012;8:3627–33.

    Article  CAS  Google Scholar 

  16. Rotaru A, Nicolaescu I, Rotaru P, Neaga C. Thermal characterization of humic acids and other components of raw coal. J Therm Anal Calorim. 2008;92:297–300.

    Article  CAS  Google Scholar 

  17. Badea E, Della Gatta G, Budrugeac P. Characterisation and evaluation of the environmental impact on historical parchments by differential scanning calorimetry. J Therm Anal Calorim. 2011;104:495–506.

    Article  CAS  Google Scholar 

  18. Lazzara G, Milioto S. Copolymer–cyclodextrin inclusion complexes in water and in the solid state. A physico-chemical study. J Phys Chem B. 2008;112:11887–95.

    Article  CAS  Google Scholar 

  19. De Lisi R, Lazzara G, Milioto S, Muratore N. Laponite clay in homopolymer and tri-block copolymer matrices. J Therm Anal Calorim. 2007;87:61–7.

    Article  Google Scholar 

  20. Giachi G, Capretti C, Macchioni N, Pizzo B, Donato ID. A methodological approach in the evaluation of the efficacy of treatments for the dimensional stabilisation of waterlogged archaeological wood. J Cult Herit. 2010;11:91–101.

    Article  Google Scholar 

  21. Hoffmann P. On the long-term visco-elastic behaviour of polyethylene glycol (PEG) impregnated archaeological oak wood. Holzforschung. 2010;64:725–8.

    Article  CAS  Google Scholar 

  22. Sivalingam G, Karthik R, Madras G. Blends of poly(ε-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stab. 2004;84:345–51.

    Article  CAS  Google Scholar 

  23. Sivalingam G, Madras G. Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(d,l-lactide), poly(glycolide). Polym Degrad Stab. 2004;84:393–8.

    Article  CAS  Google Scholar 

  24. Kubo S, Kadla JF. Effect of poly(ethylene oxide) molecular mass on miscibility and hydrogen bonding with lignin. Holzforschung. 2006;60:245–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the University of Palermo and COFIN 2008 (Prot. 2008RH3FCW_002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lazzara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, G., Donato, D.I., Lazzara, G. et al. Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry. J Therm Anal Calorim 111, 1449–1455 (2013). https://doi.org/10.1007/s10973-012-2528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2528-7

Keywords

Navigation