Skip to main content
Log in

Aggregation in aqueous media of tri-block copolymers tuned by the molecular selectivity of cyclodextrins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The water + cyclodextrin + poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) mixtures have been investigated to explore the temperature effect on the aggregation of the copolymer in the presence of cyclodextrins (CDs). The CDs with different cavity sizes were chosen because they may include either the hydrophilic poly(ethylene oxides) block or both kinds of blocks. The differential scanning calorimetry and viscosity experiments straightforwardly evidenced that the critical micellar temperature is shifted to larger values by adding a CD which is able to include the middle poly(propylene oxide) block while it is not influenced by the presence of CD which is selective to the poly(ethylene oxide) block. The enthalpy of aggregation decreases upon the CD addition for all the investigated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

    Article  Google Scholar 

  2. De Lisi R, Lazzara G, Milioto S, Muratore N, Terekhova IV. Heat capacity study to evidence the interactions between cyclodextrin and surfactant in the monomeric and micellized states. Langmuir. 2003;19:7188–95.

    Article  Google Scholar 

  3. De Lisi R, Lazzara G, Milioto S, Muratore N. Volumes and heat capacities of the aqueous sodium dodecanoate/sodium perfluorooctanoate mixtures in the presence of β-cyclodextrins. Phys Chem Chem Phys. 2003;5:5084–90.

    Article  Google Scholar 

  4. Bernat V, Ringdard-Lefebvre C, Le Bas G, Perly B, Djedaïni-Pilard F. Inclusion complex of n-octyl β-d-glucopyranoside and α-cyclodextrin in aqueous solutions: thermodynamic and structural characterization. Langmuir. 2008;24:3140–9.

    Article  CAS  Google Scholar 

  5. Haller J, Katze U. Complexation versus micelle formation: α-cyclodextrin + n-decyltrimethylammonium bromide aqueous solutions. Chem Phys Lett. 2008;463:94–8.

    Article  CAS  Google Scholar 

  6. Guerrero-Martínez A, González-Gaitano G, Viñas MH, Tardajos G. Inclusion complexes between β-cyclodextrin and a gemini surfactant in aqueous solution: an NMR study. J Phys Chem B. 2006;110:13819–28.

    Article  Google Scholar 

  7. Mehta SK, Bhasin KK, Shilpee D, Singla ML. Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence of α-, β-, HPβ- and γ-cyclodextrins. J Colloid Interface Sci. 2008;321:442–51.

    Article  CAS  Google Scholar 

  8. Nicolle GM, Merbach AE. Destruction of perfluoroalkyl surfactant aggregates by β-cyclodextrin. Chem Commun. 2004;7:854−5.

    Article  Google Scholar 

  9. Terekhova IV, De Lisi R, Lazzara G, Milioto S, Muratore N. Volume and heat capacity studies to evidence interactions between cyclodextrins and nicotinic acid in water. J Therm Anal Calorim. 2008;92:285–90.

    Article  CAS  Google Scholar 

  10. Wan Yunus WMZ, Taylor J, Bloor DM, Hall DG, Wyn-Jones E. Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with α- and β-cyclodextrins. J Phys Chem. 1992;96:8979–82.

    Article  CAS  Google Scholar 

  11. Funasaki N, Ishikawa S, Neya S. Proton NMR study of α-cyclodextrin inclusion of short-chain surfactants. J Phys Chem B. 2003;107:10094−9.

    Article  CAS  Google Scholar 

  12. Guo QX, Li ZZ, Ren T, Zhu XQ, Liu YC. Inclusion complexation of sodium alkyl sulfates with β-cyclodextrin. A 1H NMR study. J Inclusion Phenom Mol Recognit Chem. 1994;17:149–56.

    Article  CAS  Google Scholar 

  13. Cabaleiro-Lago C, Nilsson M, Soderman O. Self-diffusion NMR studies of the host−guest interaction between β-cyclodextrin and alkyltrimethylammonium bromide surfactants. Langmuir. 2005;21:11637–44.

    Article  CAS  Google Scholar 

  14. Xing H, Lin S, Yan P, Jin-Xin X. Demicellization of a mixture of cationic−anionic hydrogenated/fluorinated surfactants through selective inclusion by α- and β-cyclodextrin. Langmuir. 2008;24:10654–64.

    Article  CAS  Google Scholar 

  15. Xing H, Lin SS, Yan P, Xiao JX, Chen YM. NMR studies on selectivity of β-cyclodextrin to fluorinated/hydrogenated surfactant mixtures. J Phys Chem B. 2007;111:8089–95.

    Article  CAS  Google Scholar 

  16. Milioto S, Bakshi MS, Crisantino R, De Lisi R. Thermodynamic properties of water-β-cyclodextrin-dodecylsurfactant ternary systems. J Solution Chem. 1995;24:103–20.

    Article  CAS  Google Scholar 

  17. De Lisi R, Milioto S, De Giacomo A, Inglese A. Thermodynamic properties of sodium n-perfluoroalkanoates in water and in water + cyclodextrins mixtures. Langmuir. 1999;15:5014–22.

    Article  Google Scholar 

  18. De Lisi R, Milioto S, Pellerito A, Inglese A. Thermodynamic properties of sodium n-alkanecarboxylates in water and in water + cyclodextrins mixtures. Langmuir. 1998;14:6045–53.

    Article  Google Scholar 

  19. Harada A, Li J, Kamachi M. Preparation and properties of inclusion complexes of polyethylene glycol with α-cyclodextrin. Macromolecules. 1993;26:5698–703.

    Article  CAS  Google Scholar 

  20. Harada A, Kamachi M. Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules. 1990;23:2821–3.

    Article  CAS  Google Scholar 

  21. Harada A, Kamachi M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature. 1992;356:325–7.

    Article  CAS  Google Scholar 

  22. Wenz G, Han BH, Muller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev. 2006;106:782–817.

    Article  CAS  Google Scholar 

  23. Hunt MA, Tonelli AE, Balik CM. Effect of guest hydrophobicity on water sorption behavior of oligomer/α-cyclodextrin inclusion complexes. J Phys Chem B. 2007;111:3853–8.

    Article  CAS  Google Scholar 

  24. Peet J, Rusa CC, Hunt MA, Tonelli AE, Balik CM. Solid-state complexation of poly(ethylene glycol) with α-cyclodextrin. Macromolecules. 2005;38:537–41.

    Article  CAS  Google Scholar 

  25. Lo Nostro P, Lopes JR, Cardelli C. Formation of cyclodextrin-based polypseudorotaxanes: solvent effect and kinetic study. Langmuir. 2001;17:4610–5.

    Article  CAS  Google Scholar 

  26. Jing B, Chen X, Hao J, Qiu H, Chai Y, Zhang G. Supramolecular self-assembly of polypseudorotaxanes in ionic liquid. Colloids Surf A Physicochem Eng Asp. 2007;192:51–5.

    Article  Google Scholar 

  27. Lazzara G, Milioto S. Copolymer−cyclodextrin inclusion complexes in water and in the solid state. A physico-chemical study. J Phys Chem B. 2008;12:11887–95.

    Article  Google Scholar 

  28. Li J, Ni X, Zhou Z, Leong KW. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and α-cyclodextrin. J Am Chem Soc. 2003;125:1788–95.

    Article  CAS  Google Scholar 

  29. Gaitano GG, Brown W, Tardajos G. Inclusion complexes between cyclodextrins and triblock copolymers in aqueous solution: a dynamic and static light-scattering study. J Phys Chem B. 1997;101:710–9.

    Article  CAS  Google Scholar 

  30. Li J, Li X, Zhou Z, Ni X, Leong KW. Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and α-cyclodextrin. Macromolecules. 2001;34:7236–7.

    Article  CAS  Google Scholar 

  31. Joseph J, Dreiss CA, Cosgrove T, Pedersen JS. Rupturing polymeric micelles with cyclodextrins. Langmuir. 2007;23:460–6.

    Article  CAS  Google Scholar 

  32. Fujita H, Ooya T, Yui N. Synthesis and characterization of a polyrotaxane consisting of β-cyclodextrins and a poly(ethylene glycol)-poly(propylene glycol) triblock copolymer. Macromol Chem Phys. 1999;200:706–13.

    Article  CAS  Google Scholar 

  33. Udachin KA, Wilson LD, Ripmeester JA. Solid polyrotaxanes of polyethylene glycol and cyclodextrins: the single crystal X-ray structure of PEG−β-cyclodextrin. J Am Chem Soc. 2000;122:12375–6.

    Article  CAS  Google Scholar 

  34. Lazzara G, Milioto S, Muratore N. Solubilization of an organic solute in aqueous solutions of unimeric block copolymers and their mixtures with monomeric surfactant: volume, surface tension, differential scanning calorimetry, viscosity, and fluorescence spectroscopy studies. J Phys Chem B. 2008;112:5616–25.

    Article  CAS  Google Scholar 

  35. Da Silva RC, Olofsson G, Schillen K, Loh W. Influence of ionic surfactants on the aggregation of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) block copolymers studied by differential scanning and isothermal titration calorimetry. J Phys Chem B. 2008;106:1239–46.

    Article  Google Scholar 

  36. Dwyer C, Viebke C, Meadows J. Propofol induced micelle formation in aqueous block copolymer solutions. Colloid Surf A Physicochem Eng Asp. 2005;254:23–30.

    Article  CAS  Google Scholar 

  37. De Lisi R, Lazzara G, Lombardo R, Milioto S, Muratore N, Turco Liveri ML. Thermodynamic behavior of non-ionic tri-block copolymers in water at three temperatures. J Solution Chem. 2006;35:659–78.

    Article  Google Scholar 

  38. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules. 1994;27:2414–25.

    Article  CAS  Google Scholar 

  39. Patterson I, Armstrong J, Chowdhry B, Leharne S. Thermodynamic model fitting of the calorimetric output obtained for aqueous solutions of oxyethylene-oxypropylene-oxyethylene triblock copolymers. Langmuir. 1997;13:2219–26.

    Article  Google Scholar 

  40. De Lisi R, Lazzara G, Milioto S, Muratore N. Volumes of aqueous block copolymers based on poly(propylene oxides) and poly(ethylene oxides) in a large temperature range: a quantitative description. J Chem Thermodyn. 2006;38:1344–50.

    Article  Google Scholar 

  41. Lazzara G, Milioto S, Gradzielski M. The solubilisation behaviour of some dichloroalkanes in aqueous solutions of PEO-PPO-PEO triblock copolymers: a dynamic light scattering, fluorescence spectroscopy, and SANS study. Phys Chem Chem Phys. 2006;8:2299–312.

    Article  CAS  Google Scholar 

  42. Wen XG, Verrall RE, Liu GJ. Effect of anesthetic molecules (halothane and isoflurane) on the aggregation behavior of POE-POP-POE triblock copolymers. J Phys Chem B. 1997;103:2620–6.

    Article  Google Scholar 

  43. Ikeda T, Lee WK, Ooya T, Yui N. Thermodynamic analysis of inclusion complexation between α-cyclodextrin-based molecular tube and poly(ethylene oxide)-block-poly(tetrahydrofuran)-block-poly(ethylene oxide) triblock copolymer. J Phys Chem B. 2003;107:14–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the University of Palermo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lazzara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Lazzara, G. Aggregation in aqueous media of tri-block copolymers tuned by the molecular selectivity of cyclodextrins. J Therm Anal Calorim 97, 797–803 (2009). https://doi.org/10.1007/s10973-009-0223-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0223-0

Keywords

Navigation