Skip to main content
Log in

Heat capacities and thermodynamic properties of Ni9(btz)12(DMA)6(NO3)6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The low-temperature molar heat capacity of crystalline Ni9(btz)12(DMA)6(NO3)6 (1) (btz = benzotriazolate; DMA = N,N′-dimethylacetamide) was measured by temperature-modulated differential scanning calorimetry for the first time. The thermodynamic parameters such as entropy and enthalpy relative to reference temperature 298.15 K were obtained based on the above molar heat capacity data. The compound was synthesized by solvothermal method and characterized by powder X-ray diffraction and FT-IR spectra. Moreover, the thermal stability and the decomposition mechanism of Ni9(btz)12(DMA)6(NO3)6 were investigated by thermogravimetry (TG) analysis under air atmosphere from 300 to 873 K. The experimental results through TG measurement demonstrate that the compound has a two-stage mass loss in air flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fendler JH, Meldrum FC. The colloid-chemical approach to nanostructured materials. Adv Mater. 1995;7:607–32.

    Article  CAS  Google Scholar 

  2. Lakshmi BB, Patrissi CJ, Martin CR. Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater. 1997;9:2544–50.

    Article  CAS  Google Scholar 

  3. Diaz-Garcia MA, Ledoux I, Duro JA, Torres T, AgulM-Mpez F, Zyss J. Third-order nonlinear optical properties of soluble octasubstituted metallophthalocyanines. J Phys Chem. 1994;98:8761–4.

    Article  CAS  Google Scholar 

  4. Ranjbar ZR, Morsali A. Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles. J Mol Struct. 2009;936:206–12.

    Article  CAS  Google Scholar 

  5. Botas JA, Calleja G, Sanchez-Sanchez M, Orcajo MG. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir. 2010;26:5300–3.

    Article  CAS  Google Scholar 

  6. Cao DP, Lan JH, Wang WC, Smit B. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. Angew Chem Int Ed. 2009;48:4730–3.

    Article  CAS  Google Scholar 

  7. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.

    Article  CAS  Google Scholar 

  8. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 2009;38:1477–504.

    Article  CAS  Google Scholar 

  9. Chaffee AL, Wells BA. Modeling gas separation in metal–organic frameworks. Adsorption. 2011;17:255–64.

    Article  Google Scholar 

  10. Ranjbar ZR, Hamidi S, Heshmatpour F, Morsali A. Thermal, spectroscopic, X-ray powder diffraction, and structural studies on a new Cd(II) mixed-ligand coordination polymer. J Coord Chem. 2009;62:2022–7.

    Article  CAS  Google Scholar 

  11. Akhbari K, Morsali A. A thallium(I) tetranuclear cubic cage unit in an interpenetrated supramolecular polymer: a new precursor for the preparation of Tl2O3 nanostructures. Polyhedron. 2011;30:2459–65.

    Article  CAS  Google Scholar 

  12. Wang XL, Qin C, Wu SH, Shao KZ, Lan YQ, Wang S, Zhu DX, Su DM, Wang EB. Bottom-up synthesis of porous coordination frameworks: apical substitution of a pentanuclear tetrahedral precursor. Angew Chem. 2009;121:5395–9.

    Article  Google Scholar 

  13. Wunderlich B. The tribulations and successes on the road from DSC to TMDSC in the 20th century the prospects for the 21st century. J Therm Anal Calorim. 2004;78:7–31.

    Article  CAS  Google Scholar 

  14. Qi YN, Zhang J, Qiu SJ, Sun LX, Xu F, Zhu M, et al. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites. J Therm Anal Calorim. 2009;98:533–7.

    Article  CAS  Google Scholar 

  15. Androsch R. Heat capacity measurements using temperature-modulated heat flux DSC with close control of the heater temperature. J Therm Anal Calorim. 2000;61:75–89.

    Article  CAS  Google Scholar 

  16. Reading M, Elliot D, Hill VL. Some aspects of the theory and practise of modulated differential scanning calorimetry. In: Proceedings of the 21st North American Thermal Analysis Society Conference, Atlanta, GA. 1992. p. 145–150.

  17. Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta. 1994;238:295–307.

    Article  CAS  Google Scholar 

  18. Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85:179–87.

    Article  CAS  Google Scholar 

  19. Divi S, Chellappa R, Chandra D. Heat capacity measurement of organic thermal energy materials. J Chem Thermodyn. 2006;38:1312–26.

    Article  CAS  Google Scholar 

  20. Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402:91–8.

    Article  CAS  Google Scholar 

  21. Qiu SJ, Chu HL, Zhang J, Qi YN, Sun LX, Xu F. Heat capacities and thermodynamic properties of CoPc and CoTMPP. J Therm Anal Calorim. 2008;91:841–8.

    Article  CAS  Google Scholar 

  22. Zhang J, Liu YY, Zeng JL, Xu F, Sun LX, You WS, et al. Thermodynamic properties and thermal stability of the synthetic zinc formate dihydrate. J Therm Anal Calorim. 2008;91:861–6.

    Article  CAS  Google Scholar 

  23. Jiao CL, Song LF, Jiang CH, Zhang J, Si XL, Qiu SJ, Wang S, Sun LX, Xu F, Li F, Zhao JL. Low-temperature heat capacities and thermodynamic properties of Mn3(HEDTA)2·H2O. J Therm Anal Calorim. 2010;102:1155–60.

    Article  CAS  Google Scholar 

  24. Jiang CH, Song LF, Jiao CL, Zhang J, Sun LX, Xu F, Zhang HZ, Xu QY, Gabelica Z. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103:1095–103.

    Article  CAS  Google Scholar 

  25. Song LF, Jiang CH, Jiao CL, Zhang J, Sun LX, Xu F, Jiao QZ, Xing YH, Du Y, Cao Z, Huang FL. Heat capacities and thermodynamic properties of one manganese-based MOFs. J Therm Anal Calorim. 2010;102:1161–6.

    Article  CAS  Google Scholar 

  26. Jiang CH. Synthesis, thermochemistry, adsorption and senor performances of organic-inorganic coordination polymers. Dissertation for Doctoral Degree, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. 2011. p. 131–2.

  27. Archer DG. Thermodynamic properties of synthetic sapphire (alpha-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the National Basic Research Program (973 Program) of China (2010CB631303), the National Natural Science Foundation of China (Nos. 20833009, 20873148, 20903095, 50901070, 51071146, 51071081, and U0734005), National Natural Science Foundation of Liaoning (No. 20102224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Xian Sun, Zhong Cao or Fen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YX., Sun, LX., Cao, Z. et al. Heat capacities and thermodynamic properties of Ni9(btz)12(DMA)6(NO3)6 . J Therm Anal Calorim 111, 1603–1608 (2013). https://doi.org/10.1007/s10973-012-2475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2475-3

Keywords

Navigation