Skip to main content
Log in

Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method

Synthesis, characterization and studies of magnetic and electrical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carboxylate hydrazinate complex involving mixed metals have been synthesized and used as precursor for preparing the nanocrystalline Mn–Ni–Zn ferrite. Chemical composition of complex was fixed from chemical analysis results, infrared studies, thermogravimetric and differential scanning calorimetric analysis and isothermal weight loss studies. Nano-crystalline Mn–Ni–Zn ferrite particles obtained by thermal autocatalytic decomposition were characterized using X-ray diffraction studies, infrared spectral studies and TEM measurement. Two peaks in the region of 340–420 and 550–660 cm−1 observed in the infrared spectrum of “as synthesized” oxide are characteristics of spinel ferrites. Average particle size of “as synthesized” Mn–Ni–Zn ferrite was found to be 10 nm. “As synthesized” Mn–Ni–Zn ferrite showed Curie point at 313 °C. Saturation magnetization (44.7 emu/g) observed for “as synthesized” Mn–Ni–Zn ferrite is lower than bulk material which is indicative of its nano-crystalline nature. Seebeck coefficient measurement has shown that the material exhibits n-type semiconducting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129:51–65.

    Article  CAS  Google Scholar 

  2. Singh AK, Singh AK, Goel TC, Mendiratta RG. High performance Ni-substituted Mn–Zn ferrites processed by soft chemical technique. J Magn Magn Mater. 2004;281:276–80.

    Article  CAS  Google Scholar 

  3. Goldman A. Modern ferrite technology. 2nd ed. New York: Wiley; 1990. p. 71.

    Google Scholar 

  4. Singh AK, Verma A, Thakur OP, Prakash C, Goel TC, Mendiratta RG. Electrical and magnetic properties of Mn–Ni–Zn ferrites processed by citrate precursor method. J Magn Magn Mater. 2003;57:1040–4.

    CAS  Google Scholar 

  5. Venkatraju C, Sathishkumar G, Sivakumar K. Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method. J Magn Magn Mater. 2010;322:230–3.

    Article  Google Scholar 

  6. Jadhav SS, Shirsath SE, Toksha BG, Shukla SJ, Jadhav KM. Effect of cation proportion on the structural and magnetic properties of Ni–Zn Ferrites nano-size particles prepared by co-precipitation technique. Chin J Chem Phys. 2008;21(4):381–6.

    Article  CAS  Google Scholar 

  7. Verma A, Chatterjee R. Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by citrate precursor technique. J Magn Magn Mater. 2006;306:313–20.

    Article  CAS  Google Scholar 

  8. Singh AK, Goel TC, Mendiratta RG. Effect of cation distribution on the properties of Mn0.2Zn x Ni0.8−x Fe2O4. Solid State Comm. 2003;12:121–5.

    Article  Google Scholar 

  9. Bueno AR, Gregori ML, Nobrega MCS. Microwave absorbing properties of Ni0.5−x Zn0.5−x Me2x Fe2O4(Me = Cu, Mn, Mg) ferrite–wax composite in X-band frequencies. J Magn Magn Mater. 2008;320:864–70.

    Article  CAS  Google Scholar 

  10. Stefanescu M, Stoia M, Stefanescu O, Barvinshi P. Obtaining of Ni0.65Zn0.35Fe2O4 nanoparticles at low temperature starting from metallic nitrates and polyols. J Therm Anal Calorim. 2010;99(2):459.

    Article  CAS  Google Scholar 

  11. Deb N. Thermal decomposition of manganese (II) bis(oxalato) nickelate(II) tetrahedrate. J Therm Anal Calorim. 2005;81:61–5.

    Article  CAS  Google Scholar 

  12. Carp O, Patron L, Pascu G, Mindru L, Stanica N. Thermal investigations of nickel–zinc ferrites formation from malate coordination compounds. J Therm Anal Calorim. 2006;84(2):391–4.

    Article  CAS  Google Scholar 

  13. Rane KS, Uskaikar H, Pednekar R, Mhalsikar R. The low temperature synthesis of metal oxides by novel hydrazine method. J Therm Anal Calorim. 2007;90(3):627–38.

    Article  CAS  Google Scholar 

  14. Rane KS, Verenkar VMS. Synthesis of ferrite grade γ-Fe2O3. Bull Mater Sci. 2001;24(1):39–45.

    Article  CAS  Google Scholar 

  15. Gajapathy D, Patil KC, Pai Vernekar VR. Low temperature ferrite formation using metal oxalate hydrazinate precursor. Mat Res Bull. 1982;17(1):29–32.

    Article  Google Scholar 

  16. Raju B, Sivasankar BN. Spectral, thermal and X-ray studies on some new bis hydrazine lanthanide(III) glyoxylates. J Therm Anal Calorim. 2008;94(1):289–96.

    Article  CAS  Google Scholar 

  17. Budkuley JS, Patil KC. Synthesis and thermoanalytical properties of mixed metal sulfite hydrazinate hydrates II. Synth React Inorg Met Org Chem. 1991;21(4):709–15.

    Article  CAS  Google Scholar 

  18. Ravindranathan P, Patil KC. Thermal reactivity of metal formate hydrazinates. Thermochim Acta. 1983;71:53–7.

    Article  CAS  Google Scholar 

  19. Mahesh GV, Patil KC. Thermal reactivity of metal acetate hydrazinates. Thermochim Acta. 1986;99(1):153–8.

    Article  CAS  Google Scholar 

  20. Randhawa BS, Dosanjh HS, Kumar N. Synthesis of potassium ferrite by precursor and combustion methods a comparative study. J Therm Anal Calorim. 1999;95(1):75–80.

    Article  Google Scholar 

  21. Sivasankar BN, Govindarajan S. Studies on bis(hydrazine) metal malonates and succinates. Synth React Inorg Met Org Chem. 1994;24(9):1573–82.

    Article  CAS  Google Scholar 

  22. Sivasankar BN. Cobalt(II), nickel(II) and zinc(II) dicarboxylate complexes with hydrazine as bridged ligand characterization and thermal degradation. J Therm Anal Calorim. 2006;86(2):385–92.

    Article  CAS  Google Scholar 

  23. Sivasankar BN, Govindarajan S. Hydrazine mixed metal malonates—new precursors for metal cobaltites. Mater Res Bull. 1996;31(1):47–54.

    Article  CAS  Google Scholar 

  24. Sivasankar BN, Govindrajan S. Acetate and malonate complexes of cobalt (II), nickel(II) and zinc(II) with hydrazinium cation: preparation, spectral and thermal studies. J Therm Anal. 1997;48(6):1401–13.

    Article  CAS  Google Scholar 

  25. Verenkar VMS, Porob RA, Sawant SY, Kannan KR. Synthesis, characterisation and thermal analysis of nickel manganese succinato-hydrazinate. In: Singh Mudher KD, Bharadwaj S, Ravindran PV, Sali SK, Venugopal V, editors. Proceedings of the 14th national symposium on thermal analysis, Thermans 2004. Vadodara: Indian Thermal Analysis Society; 2004. p. 335–337.

  26. Govindrajan S, Banu SUN, Sarayanan N, Sivasankar BN. Bis-hydrazine metal maleate and fumarate: preparation, spectral and thermal studies. Proc Indian Acad Sci (Chem Sci). 1995;107(5):559–65.

    Google Scholar 

  27. Khalil I, Petit-Ramel MM. Polynuclear complexes quantitative and qualitative study of copper-yttrium malate and copper-uranyl malate. J Inorg Nucl Chem. 1979;41(5):711–6.

    Article  CAS  Google Scholar 

  28. Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3·6N2H4: a precursor for NiMn2O4 nanoparticles. J Therm Anal Calorim. 2006;86(3):605–8.

    Article  CAS  Google Scholar 

  29. Gawas U, Bhattacharya S, More A, Verenkar VMS. Synthesis and characterization of Ni0.6Zn0.4Fe2O4 obtained by self propagating auto-combustion of a novel precursor. In: Lokhande CD, editor. Proceedings of the international conference on advanced materials and applications. Kolhapur; 2007. p. 86–93.

  30. Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90(3):669–72.

    Article  CAS  Google Scholar 

  31. More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94(1):63–7.

    Article  CAS  Google Scholar 

  32. Gawas UB, Mojumdar SC, Verenkar VMS. Ni0.5Mn0.1Zn0.4Fe2(C4H2O4)3·6N2H4 precursor Ni0.5Mn0.1Zn0.4Fe2O4 nanoparticles preparation, IR spectral, XRD, SEM-EDS and thermal analysis. J Therm Anal Calorim. 2009;96(1):49–52.

    Article  CAS  Google Scholar 

  33. Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4: a precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96(1):53–7.

    Article  CAS  Google Scholar 

  34. Gawas UB, Mojumdar SC, Verenkar VMS. Synthesis, characterization, infrared studies, and thermal analysis of Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 and its decomposition product Mn0.6Zn0.4Fe2O4. J Therm Anal Calorim. 2010;100(3):867–71.

    Article  CAS  Google Scholar 

  35. Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. 2010;100(3):789–92.

    CAS  Google Scholar 

  36. Vogel’s, Text book of quantitative inorganic analysis (Revised by Jeffery GH, Bassettv, Mendham J and Denney RC). 5th ed. Longman; 1989. p. 402.

  37. Likhite SD, Radhakrishnamurthy C, Sahasrabudhe PW. Alternating current electromagnet type hysteresis loop tracer for minerals and rocks. Rev Sci Instr. 1965;36(11):1558–60.

    Article  Google Scholar 

  38. Likhite SD, Radhakrishnamurthy C. Initial susceptibility and constricted rayleigh loops of some basalts. Curr Sci. 1966;35:534–6.

    CAS  Google Scholar 

  39. Braibanti A, Dallavalle F, Pellinghelli MA, Leporati E. The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg Chem. 1968;7:1430–3.

    Article  CAS  Google Scholar 

  40. Tsuchiya R, Yonemura M, Uehera A, Kyuno E. Derivatographic studies on transition metal complexes. XIII. Thermal decomposition of [Ni(N2H4)6]X2 complexes. Bull Chem Soc Jpn. 1974;47(3):660–4.

    Article  CAS  Google Scholar 

  41. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds part B. 6th ed. New York: Wiley; 1978. p. 13.

    Google Scholar 

  42. Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99:1727–35.

    Article  CAS  Google Scholar 

  43. Srinivasan TT, Srivastava CM, Venkataramani N, Patni MJJ. Infrared absorption in spinel ferrites. Bull Mater Sci. 1984;6(6):1063–7.

    Article  CAS  Google Scholar 

  44. Peng CH, Hwang CC, Hongb CK, Chen SY. A self-propagating high-temperature synthesis method for Ni-ferrite powder synthesis. Mater Sci Eng B. 2004;107:295–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawas, U.B., Verenkar, V.M.S. & Mojumdar, S.C. Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method. J Therm Anal Calorim 108, 865–870 (2012). https://doi.org/10.1007/s10973-012-2387-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2387-2

Keywords

Navigation