Skip to main content
Log in

Effect of compositional gradient on thermal behavior of synthetic graphite–phenolic nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Synthetic graphite–phenolic nanocomposites were designed and synthesized with a compositional gradient which is shown to influence transient temperature fields during rapid temperature changes. Such nanocomposites were fabricated using a compression moulding technique, and thermal conductivity and heat capacity of nanocomposites were experimentally determined using a modified transient plane source technique over a wide temperature range from 253.15 to 373.15 K. The effects of four compositional gradient configurations on the transient temperature field across the thickness of a nanocomposite plate, at a high imposed temperature, was investigated. The transient time and temperature fields in nanocomposite structures were highly affected by the compositional gradient configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fukushima H, Drzal L, Rook B, Rich M. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim. 2006;85(1):235–8. doi:10.1007/s10973-005-7344-x.

    Article  CAS  Google Scholar 

  2. Wang N, Zhang X, Zhu D, Gao J. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2011:1–6. doi:10.1007/s10973-011-1467-z.

  3. Sihn S, Ganguli S, Roy AK, Qu L, Dai L. Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes. Compos Sci Technol. 2008;68(3–4):658–65.

    Article  CAS  Google Scholar 

  4. Kalaitzidou K, Fukushima H, Drzal LT. Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos A Appl Sci Manuf. 2007;38(7):1675–82.

    Article  Google Scholar 

  5. Biswas S, Fukushima H, Drzal LT. Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites. Compos A Appl Sci Manuf. 2011;42(4):371–5.

    Article  Google Scholar 

  6. Bagci MD, Apalak MK. Thermal residual stresses in one-directional functionally graded plates subjected to in-plane heat flux. Numer Heat Transf A Appl. 2011;60(1):50–83.

    Article  CAS  Google Scholar 

  7. Zhou YT, Lee KY, Yu DH. Transient heat conduction in a functionally graded strip in contact with well stirred fluid with an outside heat source. Int J Heat Mass Transf. 2011;54(25–26):5438–43.

    Article  Google Scholar 

  8. Cho JR, Oden JT. Functionally graded material: a parametric study on thermal-stress characteristics using the Crank–Nicolson–Galerkin scheme. Comput Methods Appl Mech Eng. 2000;188(1–3):17–38.

    Article  Google Scholar 

  9. Apalak MK, Bagci MD. Thermal residual stresses in adhesively bonded in-plane functionally graded clamped plates subjected to an edge heat flux. J Adhes Sci Technol. 2011;25(15):1861–908.

    Article  CAS  Google Scholar 

  10. Agarwal B, Upadhyay PC, Banta L, Lyons D. Transient temperature distribution in composites with layers of functionally graded materials (FGMs). J Reinf Plast Compos. 2006;25(5):513–42.

    Article  CAS  Google Scholar 

  11. Tian M, Zhu S, Chen Q, Pan N. Effects of layer stacking sequence on temperature response of multi-layer composite materials under dynamic conditions. Appl Therm Eng. 2012;33–34:219–26. doi:10.1016/j.applthermaleng.2011.09.039.

    Article  Google Scholar 

  12. C-Therm Technologies Ltd. http://www.ctherm.com/products/tci_thermal_conductivity/. Accessed 08 2011.

  13. Hibbitt D, Karlson B, Sorensen P. ABAQUS user’s manual, version 6.9. Rhode Island: Hibbitt, Karlson, Sorensen Inc; 2009.

  14. Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon. 2008;46(5):806–17.

    Article  CAS  Google Scholar 

  15. Kuo CH, Huang HM. Responses and thermal conductivity measurements of multi-wall carbon nanotube (MWNT)/epoxy composites. J Therm Anal Calorim. 2011;103(2):533–42.

    Article  CAS  Google Scholar 

  16. Xu F, Sun L, Zhang J, Qi Y, Yang L, Ru H, et al. Thermal stability of carbon nanotubes. J Therm Anal Calorim. 2011;102(2):785–91. doi:10.1007/s10973-010-0793-x.

    Article  Google Scholar 

  17. Silva G, Musumeci A, Gomes A, Liu J-W, Waclawik E, George G, et al. Characterization of commercial double-walled carbon nanotube material: composition, structure, and heat capacity. J Mater Sci. 2009;44(13):3498–503. doi:10.1007/s10853-009-3468-x.

    Article  CAS  Google Scholar 

  18. Tan Z-C, Zhang J-B, Shang-He M. A low-temperature automated adiabatic calorimeter heat capacities of high-purity graphite and polystyrene. J Therm Anal Calorim. 1999;55(1):283–9. doi:10.1023/a:1010177331806.

    Article  CAS  Google Scholar 

  19. Hone J, Batlogg B, Benes Z, Johnson AT, Fischer JE. Quantized phonon spectrum of single-wall carbon nanotubes. Science. 2000;289(5485):1730–3.

    Article  CAS  Google Scholar 

  20. McHugh J, Fideu P, Herrmann A, Stark W. Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM-DSC and standard DSC techniques. Polym Test. 2010;29(6):759–65.

    Article  CAS  Google Scholar 

  21. Cecen V, Tavman IH, Kok M, Aydogdu Y. Epoxy- and polyester-based composites reinforced with glass, carbon and aramid fabrics: measurement of heat capacity and thermal conductivity of composites by differential scanning calorimetry. Polym Compos. 2009;30(9):1299–311.

    Article  CAS  Google Scholar 

  22. Abbassi A, Khoshmanesh K. Numerical simulation and experimental analysis of an industrial glass melting furnace. Appl Therm Eng. 2008;28(5–6):450–9. doi:10.1016/j.applthermaleng.2007.05.011.

    Article  CAS  Google Scholar 

  23. Peng X-L, Li X-F. Transient response of temperature and thermal stresses in a functionally graded hollow cylinder. J Therm Stresses. 2010;33(5):485–500.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Advanced Manufacturing Cooperative Research Centre (AMCRC). Ehsan Bafekrpour also would like to express his thanks to Dr. Khashayar Khoshmanesh for his helpful discussions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Bafekrpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bafekrpour, E., Simon, G.P., Yang, C. et al. Effect of compositional gradient on thermal behavior of synthetic graphite–phenolic nanocomposites. J Therm Anal Calorim 109, 1169–1176 (2012). https://doi.org/10.1007/s10973-012-2386-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2386-3

Keywords

Navigation