Skip to main content
Log in

Thermal properties of Na2TeO4(s) and TiTe3O8(s)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Molar heat capacity measurement on Na2TeO4(s) and TiTe3O8(s) were carried out using differential scanning calorimeter. The molar heat capacity values were least squares analyzed and the dependence of molar heat capacity with temperature for Na2TeO4(s) and TiTe3O8(s) can be given as,

$$ \begin{gathered} {\text{C}}^{\text{o}}_{{{\text{p}},{\text{m}}}} \left\{ {{\text{Na}}_{ 2} {\text{TeO}}_{ 4} \left( {\text{s}} \right)} \right\} \,={159}.17 { } + 1.2\,\times\,10^{-4}T-{55}.34\,\times\,10^{5}/T^{2};\hfill \\ C^{\text{o}}_{{{\text{p}},{\text{m}}}} \left\{ {{\text{TiTe}}_{ 3} {\text{O}}_{ 8} \left( {\text{s}} \right)} \right\}\,=\,{ 275}.22{ }+{4}.0\,\times\, 10^{-5}T-{58}.28\,\times\,10^{5}/T^{2};\hfill \\ \end{gathered} $$

From this data, other thermodynamic functions were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adamson MG, Aitken EA, Lindemer TB. Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins. J Nucl Mater. 1985;130:375–92.

    Article  CAS  Google Scholar 

  2. Chattopadhyay G, Juneja JM. A thermodynamic database for tellurium-bearing systems relevant to nuclear technology. J Nucl Mater. 1993;202:10–28.

    Article  CAS  Google Scholar 

  3. Sai Baba M, Viswanathan R, Mathews CK. Thermodynamic and phase diagram studies on metal-tellurium systems employing Knudsen effusion mass spectrometry. Rapid commun mass spectrum. 1996;10:691–8.

    Article  Google Scholar 

  4. Johnson CE, Johnson I, Blackburn PE, Crouthamel CE. Effects of oxygen concentration on properties of fast reactor mixed oxide fuel. React Technol. 1972;15(4):303–38.

    CAS  Google Scholar 

  5. Kleykamp H. The chemical state of the fission products in oxide fuels. J Nucl Mater. 1985;131:221–46.

    Article  CAS  Google Scholar 

  6. Darja SP, Grega K, Miran P, Jozef M. Differential scanning calorimetry study of the solidification sequence of austenitic stainless steel. J Therm Anal Calorim. 2011;105:251–7.

    Article  Google Scholar 

  7. Latha S, Mathew MD, Parameswaran P, Bhanu Sankara Rao K, Mannan SL. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel clad tubes. Int J Press Vessels Pip. 2008;85:866–70.

    Article  CAS  Google Scholar 

  8. Mathews CK. Thermochemistry of fuel-clad and clad-coolant interactions of fast breeder reactors. Pure Appl Chem. 1995;67(6):1011–8.

    Article  CAS  Google Scholar 

  9. Lindemer TB, Besmann TM, Johnson CE. Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials. J Nucl Mater. 1981;100(1–3):178–226.

    Article  CAS  Google Scholar 

  10. Jagadeeswara Rao Ch, Venkata Krishnan R, Venkatesan KA, Nagarajan K, Srinivasan TG. Thermochemical properties of some bis (trifluoromethylsulfonyl)imide based room temperature ionic liquids. J Therm Anal Calorim. 2009;97:937–43.

    Article  CAS  Google Scholar 

  11. Schick C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem. 2009;395:1589–611.

    Article  CAS  Google Scholar 

  12. Yoshida T, Moriya Y, Tojo T, Kawaji H, Atake T, Kuroiwa Y. Heat capacity at constant pressure and thermodynamic properties of phase transitions in PbMO3 (M=Ti, Zr and Hf). J Therm Anal Calorim. 2009;95(2):675–83.

    Article  CAS  Google Scholar 

  13. Leitner J, Ruzicka K, Sedmidubsky D, Svoboda P. Heat capacity, enthalpy and entropy of calcium niobates. J Therm Anal Calorim. 2009;95(2):397–402.

    Article  CAS  Google Scholar 

  14. Venkata Krishnan R, Manikandan P, Hrudananda J, Nagarajan K. Heat capacity of La6UO12, Sm6UO12 and Eu6UO12 by DSC. Thermochim Acta. 2008;472:95–8.

    Article  Google Scholar 

  15. Venkata Krishnan R, Nagarajan K. Heat capacity measurements on uranium-cerium mixed oxides by differential scanning calorimetry. Thermochim Acta. 2006;440:141–5.

    Article  CAS  Google Scholar 

  16. Lubka A, Ginka BD. Heat capacity and thermodynamic properties of tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3. J Therm Anal Calorim. 2012;107:809–12.

    Article  Google Scholar 

  17. Leitner J, Ruzicka K, Sedmidubsk D, Svoboda P. Heat capacity, enthalpy and entropy of calcium niobates. J Therm Anal Calorim. 2009;95(2):397–402.

    Article  CAS  Google Scholar 

  18. Daniel F, Maurin M, Moret J, Philippot E. Etude structurale d’un nouveau tellurate alcalin: Na2TeO4. Evolution de la coordination du tellure(VI) et du cation quand on passé du cation lithium au sodium. J Solid State Chem. 1977;22(4):385–91.

    Article  CAS  Google Scholar 

  19. Gutierrez-Rios E, Veiga ML, Pico C. Reactions of tellurium oxides with alkali-metal oxides and hydroxides. J Chem Soc Dalton Trans. 1978;8:948–50.

    Article  Google Scholar 

  20. Meunier PG, Galy J. Sur une deformation inedite du reseau de type fluorine. Structure cristalline des phases MTe3O8 (M=Ti, Sn, Hf, Zr). J Acta Crystallogr. 1971;B27:602–8.

    Article  Google Scholar 

  21. Venkata Krishnan R, Hrudananda J, Kutty KVG, Nagarajan K. Heat capacity and thermal expansion coefficient of rare earth uranates RE6UO12 (RE 5 Nd, Gd and Eu). J Therm Anal Calorim. 2010;101:371–7.

    Article  CAS  Google Scholar 

  22. Panneerselvam G, Venkata Krishnan R, Nagarajan K, Antony MP. Thermal expansion and heat capacity of dysprosium hafnate. J Therm Anal Calorim. 2010;101:169–73.

    Article  CAS  Google Scholar 

  23. Kubaswchewski O, Alcock CB, Spencer PJ. Materials thermochemistry. 6th ed. Oxford: Pergamon Press; 1993.

    Google Scholar 

  24. Cordfunke EHP, Koning RJM, editors. Thermochemical data for reactor materials and fission products. Amsterdam: North-Holland; 1990.

    Google Scholar 

  25. de Ligny D, Richet P, Westrum EF Jr, Roux J. Heat capacity and entropy of rutile (TiO2) and nepheline (NaAlSiO4). Phys Chem Miner. 2002;29:267–72.

    Article  Google Scholar 

  26. Mezaki R, Margrave JL. Thermodynamic properties of inorganic substances. IV. The high temperature heat contents of TeO2 and Na2TeO4. J Phys Chem. 1962;66(9):1713–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. L. Varshney, Head, AMS and S. Francis, AMS, Isomed, B.A.R.C. for helping with DSC study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanthi Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadilkar, H.V., Bhojane, S.M., Kulkarni, J. et al. Thermal properties of Na2TeO4(s) and TiTe3O8(s). J Therm Anal Calorim 111, 939–942 (2013). https://doi.org/10.1007/s10973-012-2332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2332-4

Keywords

Navigation