Skip to main content

Advertisement

Log in

Differential scanning calorimetric measurements and thermodynamic functions of YbRhO3(s)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Standard molar heat capacity, \(C_{{\rm{p}},{\rm{m}}}^{\rm{o}}(T)\), of YbRhO3(s) was determined using a heat flux type differential scanning calorimeter from 126 to 846 K. The heat capacities in the temperature range 307 ≤ T (K) ≤ 846 were fitted into a polynomial expression and can be represented by \(C_{{\rm{p}},{\rm{m}}}^{\rm{o}}\) (YbRhO3, s, T) [J/(K mol)] = 106.82 + 8.57 × 10−3T (K) − 9.48 × 105/ T2(K). The standard molar heat capacity of YbRhO3(s), \(C_{{\rm{p}},{\rm{m}}}^{\rm{o}}\), at 298.15 K is 98.7 J/(K mol). The standard molar Gibbs energy of formation of YbRhO3(s) was also determined using calcia stabilized zirconia as an oxide electrolyte and air as the reference electrode by the solid state electrochemical technique. The cell can be represented by (−)Pt–Rh/{Yb2O3(s) + YbRhO3(s) + Rh(s)}//CSZ//O2(p (O2) = 21.21 kPa)/Pt–Rh(+). The electromotive force was measured in the temperature range from 889 to 1110 K. The standard Gibbs energy of formation of YbRhO3(s) from elements in their standard state can be represented by ΔfGo{YbRhO3(s)}/kJ/mol(±1.62) = −1110.9 + 0.287 T (K). The heat capacity of YbRhO3(s) was used along with the data obtained from the electrochemical cell to evaluate all thermodynamic functions of YbRhO3(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. J.F. Scott: Nanoferroelectrics: Statics and dynamics. J. Phys.: Condens. Matter 18, 361 (2006).

    Google Scholar 

  2. A.A. Bokov and Z-G. Ye: Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31 (2006).

    Article  CAS  Google Scholar 

  3. R.M. Ormerod: Solid oxide fuel cells. Chem. Soc. Rev. 32, 17 (2003).

    Article  CAS  Google Scholar 

  4. S. Keav, S. Matam, D. Ferri, and A. Weidenkaff: Structured perovskite-based catalysts and their application as three-way catalytic converters—A review. Catalysis 4, 226 (2014).

    Google Scholar 

  5. H.S. Jarret, A.W. Sleight, H.H. Kung, and J.L. Gilson: Photoelectrochemical properties of LuRhO3(s). Surf. Sci. 101, 205 (1980).

    Article  Google Scholar 

  6. T. Nakamura, T. Shimura, M. Ito, and Y. Ikeda: Magnetic and electric properties of La1−xMxRhO3 (M = Ca, Sr, and Ba): Hole doping in 4 d ε orbitals of Rh3+ with low spin configuration. J. Solid State Chem. 103, 523 (1993).

    Article  CAS  Google Scholar 

  7. L. Carriero, Y.T. Qian, R. Kershaw, K. Dwight, and A. Wold: Stability of several iron and rhodium ternary oxides in a reducing atmosphere. Mater. Res. Bull. 20, 619 (1985).

    Article  Google Scholar 

  8. T. Taniguchi, W. Iizuka, Y. Nagata, T. Uchida, and H. Samata: Magnetic properties of RRhO3 (R = rare earth). J. Alloys Compd. 350, 24 (2003).

    Article  CAS  Google Scholar 

  9. M. Tahidul Haque, H. Satoh, and N. Kamegashira: Crystallographic phase transition, electrical and magnetic properties of stoichiometric La(Mn,Rh)O3. J. Alloys Compd. 390, 115 (2005).

    Article  CAS  Google Scholar 

  10. T.A. Mary and U.V. Varadaraju: Orthorhombic-tetragonal and semiconductor-metal transitions in the La1−xSrxRhO3 system. J. Solid State Chem. 110, 176 (1994).

    Article  Google Scholar 

  11. P.R. Watson and G.A. Somorjai: Synthesis gas conversion with perovskite catalysts. J. Catal. 74, 282 (1982).

    Article  CAS  Google Scholar 

  12. H.S. Jarrett, A.W. Sleight, H.H. Kung, and J.L. Gillson: Photoelectrochemical and solid-state properties of LuRhO3. J. Appl. Phys. 51, 3916 (1980).

    Article  CAS  Google Scholar 

  13. T. Ohnishi, T. Taniguchi, A. Ikoshi, S. Mizusaki, Y. Nagata, S.H. Lai, M.D. Lan, Y. Noro, T.C. Ozawa, K. Kindo, A. Matsuo, and S. Takayanagi: Antiferromagnetism of LnRhO3. J. Alloys Compd. 506, 27 (2010).

    Article  CAS  Google Scholar 

  14. R.D. Shannon: Cell dimensions of rare earth orthorhodites. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 26, 447 (1970).

    Article  CAS  Google Scholar 

  15. V.M. Goldschmidt: Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477 (1926).

    Article  CAS  Google Scholar 

  16. R.D. Shannon: Synthesis of some new perovskites containing indium and thallium. Inorg. Chem. 6, 1474 (1967).

    Article  CAS  Google Scholar 

  17. C. Li, K.C.K. Soh, and P. Wu: Formability of ABO3 perovskites. J. Alloys Compd. 372, 40 (2004).

    Article  CAS  Google Scholar 

  18. V.B. Lazarev and I.S. Shaplygin: Synthesis and properties of ytterbium rhodium oxide. Russ. J. Inorg. Chem. 23, 1131 (1978).

    Google Scholar 

  19. H. Kleykamp: The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle. Nucl. Technol. 80, 412 (1988).

    Article  CAS  Google Scholar 

  20. K.T. Jacob, P. Gupta, D. Han, and T. Uda: Thermodynamic properties of YbRhO3 and phase relations in the system Yb–Rh–O. J. Phase Equilib. Diffus. 37, 50 (2016).

    Article  Google Scholar 

  21. K.T. Jacob and Y. Waseda: Solid state cells with buffer electrodes for measurement of chemical potentials and Gibbs energies of formation: System Ca–Rh–O. J. Solid State Chem. 150, 213 (2000).

    Article  CAS  Google Scholar 

  22. R. Sabbah, A.N. Xu-wu, J.S. Chickos, M.L. Planas Leitao, and M.V. Roux: Torres LA Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331, 93 (1999).

    Article  CAS  Google Scholar 

  23. A. Banerjee, Z. Singh, and V. Venugopal: Heat capacity and Gibbs energy of formation of the ternary oxide CdRh2O4(s). Solid State Ionics 180, 1337 (2009).

    Article  CAS  Google Scholar 

  24. G.W.H. Hohne, W.F. Hemminger, and H.J. Flammershein: Differential Scanning Calorimetry, 2nd ed. (Springer, Berlin, 2003).

    Book  Google Scholar 

  25. M.W. Chase, Jr.: NIST-JANAF Thermochemical Tables, 4th ed. J. Phys. Chem. (monograph no. 91995).

  26. A. Banerjee, R. Prasad, and V. Venugopal: Simultaneous determination of Gibbs free energies of formation of Sr2RhO4(s) and Sr4RhO6(s) using solid-state electrochemical cells. J. Alloys Compd. 381, 58 (2004).

    Article  CAS  Google Scholar 

  27. O. Kubachewski, C.B. Alcock, and P.J. Spencer: Materials Thermochemistry, 6th ed. (Oxford, Pergamon, 1993); p. 167.

    Google Scholar 

  28. FactSage: Version 5.3.1: Thermo-Chemical Database Software, Thermfact (GTT Technologies, Germany, 1976–2004).

  29. K.T. Jacob, T. Uda, T.H. Okabe, and Y. Waseda: The standard enthalpy and entropy of formation of Rh2O3—A third law optimization. High Temp. Mater. Processes 19, 11 (2000).

    Article  CAS  Google Scholar 

  30. J. Nell, H. St, and C. O’Neill: The Gibbs free energy of formation and heat capacity of β Rh2O3 and MgRh2O4, the MgO–RhO phase diagram and constraints on the stability of Mg2RhO4. Geochim. Cosmochim. Acta 61, 4159 (1997).

    Article  CAS  Google Scholar 

  31. J.R. Berg, F.H. Spedding, and A.H. Daane: The high temperature heat contents and related thermodynamic properties of lanthanum, praseodymium, europium, ytterbium, and yttrium. Ph. D. thesis, Iowa State University of Science and Technology, July, 1961, by J. R. Berg. (submitted to).

    Book  Google Scholar 

  32. K. Graves, B. Kirby, and R. Rardin: FREED Version 2.1 (1991).

Download references

ACKNOWLEDGMENTS

The authors are thankful to Dr. S. Kannan Head, Fuel Chemistry Division and Dr. P.K. Pujari, Associate Director, Radiochemistry and Isotope Group BARC, Mumbai for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A. Differential scanning calorimetric measurements and thermodynamic functions of YbRhO3(s). Journal of Materials Research 33, 3979–3985 (2018). https://doi.org/10.1557/jmr.2018.355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.355

Navigation