Skip to main content
Log in

Termination of crystallization or ordering of flexible, linear macromolecules

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This review concerns the “termination of crystallization or ordering of flexible, linear macromolecules” before the transition from the amorphous phase reaches thermodynamic equilibrium. It makes use of the precision of hindsight in interpretation of old experiments and the back-integration of more recent experiments into the knowledge gained from the well-known older experiments which had led to the paradox: Once the semi-ordered sample is produced, its disordering frequently follows a zero-entropy-production path, i.e., its latent heat is linked to the free enthalpy of the non-equilibrium phase, while on ordering, there exists a metastable temperature region of the polymer melt which cannot be broken by nuclei of the ordered phase. The classic scheme of crystallization via nucleation and growth is used to set the stage for the discussion. This scheme has been used for many years to describe the motion of single motifs to crystallize small, rigid molecules and its slow-down when approaching the glass transition. For flexible macromolecules, the ordering mechanism needs to be expanded to the description of cooperative ordering schemes of more than one motif of the molecular segments and a more complicated, multiple-step slow down when approaching the much wider glass transition region. The structural features causing the incomplete ordering of flexible macromolecules are the three-dimensional defects created at the phase boundaries between ordered and disordered phases, initially called the amorphous defects. The matter contained in these amorphous defects possesses a much broader glass transition. If this glass transition lies above the glass transition of the unrestrained, amorphous phase, the amorphous defects represent a separate nanophase, called a rigid-amorphous fraction. Modern differential scanning calorimetry (DSC), temperature-modulated DSC, and differential fast scanning calorimetry permit the study of latent heats and heat-capacity changes involved in the liquid–solid transitions of amorphous phases, crystals, and mesophases. In this more complex framework, the “termination of crystallization of flexible, linear macromolecules” is described together with the possibility of molar mass segregation by long-range and local diffusion instead of a thermodynamic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The idea about the atomic nature of matter appeared first in his notes covering 1802/04. The book is frequently reprinted; for example, see: The Science Classical Library. New York: Citadel Press; 1964.

  2. The first write-up of the suggested classification of molecules was given in [8] (vol 3, Sect. 8.1.2); 1980. For a detailed discussion of this topic, see also [9], Sect. 2.5.

  3. See, for example, Gibbs JW: On the equilibrium of heterogeneous substances. Trans Conn Acad 1875–78;III:108–248 and 343–524. An extended abstract was published in Am J Sci Ser 3 1878;16:441–458, all reprinted in Bumstead HA, Gibbs van Name R: The scientific papers of J. Willard Gibbs, vol 1, thermodynamics. New York: Dover Publ; 1961.

  4. One distinguishes a conformation (Latin conformātĭō, forming, fashioning) from a configuration (Latin configěre, to join together). Different conformations of a molecule can be attained by rotation about bonds. Configurations need breaking of chemical bonds, as in the attainment of stereo isomers. Wunderlich [1], Fig. 4.41, or [9], Appendix 14, Fig. 3. Note the frequent misuse of these two terms in the common polymer physics literature.

  5. Wunderlich [8], vol III, p. 191: “Another general observation is the occurrence of a small melting peak several degrees above the crystallization temperature. This melting peak has also been called “annealing peak” and is often interpreted as resulting from much poorer crystals growing between the larger crystals (polypropylene, polystyrene, nylons, and polyurethanes).” For examples see graphs of Figs. IX.22, 23, 24, 27, 31 in this reference.

  6. See: 1.3: chain statistics of macromolecules, and 1.4: size and shape measurement [9].

References

  1. Wunderlich B. Thermal analysis of materials. A computer-assisted lecture course, published via the Internet (2005–2007). http://www.scite.eu and http://athas.prz.rzeszow.pl. Copyright: 16 Jan 2007.

  2. Prime RB, Wunderlich B. Extended-chain crystals. III. Size distribution of polyethylene crystals grown under elevated pressure. J Polym Sci A-2. 1969;7:2061–72.

    Article  CAS  Google Scholar 

  3. Prime RB, Wunderlich B. Extended-chain crystals. IV. Melting under equilibrium conditions. J Polym Sci A-2. 1969;7:2073–89. [Partially preprinted under the title: “The equilibrium melting of polymers,” and presented at the Proc. IUPAC symp in Kyoto and Tokyo, Japan, 30 Sep 1966].

  4. Prime RB, Wunderlich B, Melillo L. Extended-chain crystals. V. Thermal analysis and electron microscopy of the melting process in polyethylene. J Polym Sci A-2. 1969;7:2091–7.

    Article  CAS  Google Scholar 

  5. Flory PJ. Thermodynamics of crystallization of high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixture with diluents. J Chem Phys. 1949;17:223–40.

    Article  CAS  Google Scholar 

  6. Wunderlich B. The melting of defect polymer crystals. Polymer. 1964;5:611–24.

    Article  CAS  Google Scholar 

  7. Wunderlich B. Crystallization during polymerization. Fortschr Hochpolymeren Forsch. Adv Polym Sci. 1968;5:568–619.

    Article  CAS  Google Scholar 

  8. Wunderlich B. Macromolecular physics, vol I (crystal structure, morphology, defects, Chap 1–4), vol II (crystal nucleation, growth, annealing, Chap 5–7), vol III (crystal melting. Chap 8–10). New York: Academic Press; 1973, 1976, and 1980. http://www.scite.eu and http://athas.prz.rzeszow.pl.

  9. Wunderlich B. Thermal analysis of polymeric materials. Berlin: Springer; 2005. ISBN 978-3-540-23629-0. www.springer.com/3-540-23629-5.

  10. Dalton J. A new system of chemical philosophy. London; 1808.

  11. The term ‘macromolecule’ was first used on p 788 of: Staudinger H, Fritschi J. Über die Hydrierung des Kautschuks und über seine Konstitution. Helv Chim Acta 1922;5:785–806.

    Google Scholar 

  12. Staudinger H. Arbeitserinnerungen. Heidelberg: Hüthig; 1961. In his Nobel Lecture of 1953 Staudinger sets the limit of small molecules at 1,000 atoms (p. 317).

  13. Chen W, Wunderlich B. Nanophase separation of small and large molecules. Macromol Chem Phys. 1999;200:283–311.

    Article  CAS  Google Scholar 

  14. Wunderlich B. Thermodynamic description of condensed phases. J Therm Anal Calorim. 2010;102:413–24.

    Article  CAS  Google Scholar 

  15. Wunderlich B. Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Phys Chem. 1960;64:1052–6.

    Article  CAS  Google Scholar 

  16. Hildebrand JH. The entropy of vaporization as a means of distinguishing normal liquids. J Am Chem Soc. 1915;37:970–8.

    Article  CAS  Google Scholar 

  17. See, for example: Herzberg G. Infrared and Raman spectra of polyatomic molecules. Princeton: van Nostrand; 1945.

  18. Wunderlich B. The glass transition as key to identify solid phases. J Appl Polym Sci. 2007;105:49–59.

    Article  CAS  Google Scholar 

  19. Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys. 1907;22:180–190 (corrections p. 800).

  20. Debye P. Zur Theorie der spezifischen Wärme. Ann Phys. 1912;39:789–839.

    Article  CAS  Google Scholar 

  21. Wunderlich B, Baur H. Heat capacities of linear high polymers. Fortschr Hochpolymeren Forsch. Adv Polym Sci. 1970;7:151–368.

    Article  CAS  Google Scholar 

  22. Gaur U, Wunderlich B. The glass transition temperature of polyethylene. Macromolecules. 1980;13:445–6.

    Article  CAS  Google Scholar 

  23. Wunderlich B. The Athas Data Base on heat capacities of polymers. Pure Appl Chem 1995;67:1019–1026. For data tables see Pyda M http://athas.prz.rzeszow.pl.

  24. Sumpter BG, Noid DW, Liang GL, Wunderlich B. Atomistic dynamics of macromolecular crystals. Adv Polym Sci. 1994;116:27–72.

    Article  CAS  Google Scholar 

  25. Wunderlich B, Poland D. Thermodynamics of crystalline linear high polymers. II. The influence of copolymer units on the thermodynamic properties of polyethylene. J Polym Sci A. 1963;1:357–72.

    CAS  Google Scholar 

  26. Suzuki H, Grebowicz J, Wunderlich B. The glass transition of polyoxymethylene. Br Polym J. 1985;17:1–3.

    Article  CAS  Google Scholar 

  27. Sullivan P, Wunderlich B. The interference microscopy of crystalline linear high polymers. SPE Trans. 1964;1964(4):113–9.

    Google Scholar 

  28. Pak J, Wunderlich B. Reversible melting of polyethylene extended-chain crystals detected by temperature-modulated calorimetry. J Polym Sci B Polym Phys. 2002;40:2219–27.

    Article  CAS  Google Scholar 

  29. Hellmuth E, Wunderlich B. Superheating of linear high-polymer polyethylene crystals. J Appl Phys. 1965;36:3039–44.

    Article  CAS  Google Scholar 

  30. Pak J, Boller A, Moon I, Pyda M, Wunderlich B. Thermal analysis of paraffins by calorimetry. Thermochim Acta. 2000;357/358:259–66.

    Article  Google Scholar 

  31. Pak J, Wunderlich B. Melting and crystallization of polyethylene of different molar mass by calorimetry. Macromolecules. 2001;34:4492–503.

    Article  CAS  Google Scholar 

  32. Wunderlich B. Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci. 2003;28(3):383–450.

    Article  CAS  Google Scholar 

  33. Mehta A, Wunderlich B. A study of molecular fractionation during the crystallization of polymers. Colloid Polym Sci. 1975;253:193–205.

    Article  CAS  Google Scholar 

  34. Wunderlich B, Mehta A. Macromolecular nucleation. J Polym Sci Polym Phys Ed. 1974;12:255–63.

    Article  CAS  Google Scholar 

  35. Wunderlich B. Molecular nucleation and segregation. Faraday Discuss R Soc Chem. 1979;68:239–43.

    Article  Google Scholar 

  36. Mehta A, Wunderlich B. Detection of tie-molecules by thermal analysis. Makromol Chem. 1974;175:977–82.

    Article  CAS  Google Scholar 

  37. Wunderlich B. Calorimetry of nanophases of macromolecules. Int J Thermophys. 2007;28:958–67.

    Article  CAS  Google Scholar 

  38. Pak J, Pyda M, Wunderlich B. Rigid amorphous fractions and glass transitions in poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules. 2003;36:495–9.

    Article  CAS  Google Scholar 

  39. Cheng SZD, Wunderlich B. Glass transition and melting behavior of poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules. 1987;20:1630–7.

    Article  CAS  Google Scholar 

  40. Kunz M, Möller M, Heinrich U-R, Cantow H-J. Electron spectroscopic imaging studies on polyethylene, chain-folded and extended-chain crystals. Makromol Chem Makromol Symp. 1988;20(21):147–58.

    Article  Google Scholar 

  41. Wunderlich B. The influence of liquid to solid transitions on the changes of macromolecular phases from disorder to order. Thermochim Acta. 2011;522:2–13.

    Article  CAS  Google Scholar 

  42. Blundell DJ, Keller A, Kovacs AJ. A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J Polym Sci B. 1966;4:481–6.

    Article  CAS  Google Scholar 

  43. Blundell DJ, Keller A. Nature of self-seeding polyethylene crystal nuclei. J Macromol Sci. 1968;b2:301–36.

    Google Scholar 

  44. Boon J, Challa G, Van Krevelen DW. Crystallization kinetics of isotactic polystyrene II Influence of thermal history on number of nuclei. J Polym Sci A-2 Polym Phys Ed. 1968;6:1835–51.

    Article  CAS  Google Scholar 

  45. Koutsky JA, Walton AG, Baer E. Nucleation of polymer droplets. J Appl Phys. 1967;38:1832–9.

    Article  CAS  Google Scholar 

  46. Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta. 2010;50:1–13.

    Article  Google Scholar 

  47. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C. Kinetics of nucleation and overall crystallization in poly(ε-caprolactone) (PCL). Polymer. 2011;52:1863–997.

    Article  Google Scholar 

  48. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B. Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci B Polym Phys. 2006;44:1364–77.

    Article  CAS  Google Scholar 

  49. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B. Mesophases in polyethylene, polypropylene and poly(1-butene). Polymer. 2010;51:4639–62.

    Article  CAS  Google Scholar 

  50. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B. Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer. 2012;53:277–82.

    Article  CAS  Google Scholar 

  51. Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C. Crystallization and homogeneous nucleation kinetics of poly(ε-caprolactone) (PCL) with different molar masses. Macromolecules (submitted).

  52. Festag R, Alexandratos SD, Cook KD, Joy DC, Annis B, Wunderlich B. Single- and few-chain polystyrene particles by electrospray. Macromolecules. 1997;30:6238–42.

    Article  CAS  Google Scholar 

  53. Bu H, Pang Y, Song D, Yu T, Voll TM, Czornyj G, Wunderlich B. Single molecule single crystals. J Polym Sci B Polym Phys. 1991;29:139–52.

    Article  CAS  Google Scholar 

  54. Bu H, Chen E, Xu S, Guo K, Wunderlich B. Single-molecule single crystals of isotactic polystyrene. J Polym Sci B Polym Phys. 1994;32:1351–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Wunderlich.

Additional information

The Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9 in this publication were redrawn and updated with permission from the copyright holder of [1]. The figures: 17-05; 28-54; 9-15; 26-07; 34-39, 49; 16-41, 38; 32-45, correspond to Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9, in sequence. Similarly, Fig. 10 was redrawn from [8], and Figs. 11 and 12 from [47].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, B. Termination of crystallization or ordering of flexible, linear macromolecules. J Therm Anal Calorim 109, 1117–1132 (2012). https://doi.org/10.1007/s10973-012-2326-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2326-2

Keywords

Navigation