Skip to main content
Log in

The effect of titanium dioxide exposure on the thermal properties of Zebrafish (Danio rerio) bones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents the changes in the thermal properties of the control and titanium dioxide (TiO2), both nano and bulk exposed Zebrafish bones by using thermo analytical techniques. The result shows that the mass loss due to the thermal decomposition occurs in three distinct steps due to loss of water, organic and inorganic materials. The titanium dioxide exposed bones present a different thermal behaviour compared to the control bones. The residue masses are found to be increased due to titanium dioxide exposure. In particular, nano titanium dioxide exposure increases the residue mass level significantly (three fold) when compared to titanium dioxide bulk exposure. These thermal characteristics can be used as a qualitative method to check the metal oxide intoxication in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  Google Scholar 

  2. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27:1825–51.

    Article  CAS  Google Scholar 

  3. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006;32:967–76.

    Article  CAS  Google Scholar 

  4. Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicol. 2010;96:151–8.

    Article  CAS  Google Scholar 

  5. Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Korsch MJ, Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997;130:51–62.

    Article  CAS  Google Scholar 

  6. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes S. TG-MS characterization of pig bone in an inert atmosphere. J Therm Anal Calorim. 2007;88:405–9.

    Article  CAS  Google Scholar 

  7. Kosugi H, Hanihara K, Suzuki T, Himeno S, Kawabe T, Hongo T, et al. Elemental composition of ancient Japanese bones. Sci Total Environ. 1986;52:93–107.

    Article  CAS  Google Scholar 

  8. Englert N, Krause C, Thron HL, Wagner M. Studies on lead exposure of selected population groups in Berlin West Germany. Trace Elem Med. 1987;4:112–6.

    CAS  Google Scholar 

  9. Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from medicine to construction. Part I. J Therm Anal Calorim. 2007;90:653–62.

    Article  CAS  Google Scholar 

  10. Raja S, Thomas PS, Stuart BH, Guerbois JP, O’Brien C. The estimation of pig bone age for forensic application using thermogravimetric analysis. J Therm Anal Calorim. 2009;98:173–6.

    Article  CAS  Google Scholar 

  11. Presswala L, Matthews ME, Atkinson I, Najjar O, Gerhardstein N, Moran J, Wei R, Riga AT. Discovery of bound and unbound waters in crystalline amino acids revealed by thermal analysis. J Therm Anal Calorim. 2008;93:295–300.

    Article  CAS  Google Scholar 

  12. Sohar G, Pallagi E, Szabo-Revesz P, Toth K. New thermogravimetric protocol for the investigation of normal and damaged human hyaline cartilage. J Therm Anal Calorim. 2007;89:853–6.

    Article  CAS  Google Scholar 

  13. Fantner GE, Birkedal H, Kindt JH, Hassenkam T, Weaver JC, Cutroni JA, Bosma BL, Bawazer L, Finch MM, Cidade GAG, Morse DE, Stucky GD, Hansma PK. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone. 2004;35:1013–22.

    Article  CAS  Google Scholar 

  14. Okamoto Y, Hidaka S, Yamada Y, Ouchi K, Miyazaki K, Liu SY. Thermal analysis of bones from ovariectomized rats. J Biomed Mater Res. 1998;41:221–6.

    Article  CAS  Google Scholar 

  15. Mkukuma LD, Skakle JMS, Gibson IR, Imrie CT, Aspden RM, Hukins DWL. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75:321–8.

    Article  CAS  Google Scholar 

  16. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.

    Article  CAS  Google Scholar 

  17. Deviese T, Colombini MP, Regert M, Stuart BH, Guerbois JP. TGMS analysis of archaeological bone from burials of the late Roman period. J Therm Anal Calorim. 2010;99:811–3.

    Article  CAS  Google Scholar 

  18. Than P, Kereskai L. Thermal analysis of the osteoarthritic human hyaline cartilage. J Therm Anal Calorim. 2005;82:213–6.

    Article  CAS  Google Scholar 

  19. Than P, Domán I, Lörinczy D. Differential scanning calorimetry in the research of degenerative musculoskeletal disorders. Thermochim Acta. 2004;415:83–7.

    Article  CAS  Google Scholar 

  20. Szabo I, Bognar G, Kereskai L, Szasz K, Lorinczy D. Differential scanning calorimetric and histological examinations of the long head of the biceps in cadavers. J Therm Anal Calorim. 2007;88:343–9.

    Article  CAS  Google Scholar 

  21. Coe TS, Hamilton PB, Griffiths AM, Hodgson DJ, Wahab MA, Tyler CR. Genetic variation in strains of Zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology. 2009;18:144–50.

    Article  CAS  Google Scholar 

  22. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949;96:99–130.

    CAS  Google Scholar 

  23. Matthews RW. Purification of water with near-u.v. illuminated suspensions of titanium dioxide. Water Res. 1990;24:653–60.

    Article  CAS  Google Scholar 

  24. Eaton AE, Lenore S, Clesceri LS, Rice EW, Greenberg AE. Standard methods for the examination of water and wastewater. Centennial Edition. 21st ed. Washington, DC: APHA, AWWA, WEF; 2005.

    Google Scholar 

  25. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes SL. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90.

    Article  CAS  Google Scholar 

  26. Mothe CG, Mothe Filho HF, Lima RJC. Thermal study of the fossilization processes of the extinct fishes in Araripe Geopark. J Therm Anal Calorim. 2008;93:101–4.

    Article  CAS  Google Scholar 

  27. Vijayasundaram V, Ramasamy V, Palaniappan PLRM. The study of the changes in the thermal properties of Labeo rohita bones due to arsenic exposure. J Therm Anal Calorim. 2009;98:183–8.

    Article  CAS  Google Scholar 

  28. Odriozola C, Martinez-Blanes JM. Estimate of firing temperatures through bone-based chalcolithic decorated pottery. J Therm Anal Calorim. 2007;87:135–41.

    Article  CAS  Google Scholar 

  29. Utech M, Vuono D, De Luca P, Nastro A. Correlation of physical-chemical properties of healthy and pathologic human bones. J Therm Anal Calorim. 2005;80:435–8.

    Article  CAS  Google Scholar 

  30. Bálint G, Than P, Domán I, Wiegand N, Horváth G, Lorinczy D. Calorimetric examination of the human meniscus. J Therm Anal Calorim. 2009;95:759–61.

    Article  Google Scholar 

  31. Joschek S, Nies B, Krotz R, Göpferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 2000;21:1645–58.

    Article  CAS  Google Scholar 

  32. Rincon JMa, Romero M, Hidalgo A, Liso Ma J. Thermal behaviour and characterization of an iron aluminum arsenate mineral Mansfieldite-Scorodite series. J Therm Anal Calorim. 2004;76:903–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authorities of Annamalai University for providing all necessary facilities to carry out this study. The authors are grateful to the Director, Central Electro Chemical Research Institute (CECRI), Karaikudi, for providing the necessary facilities to carry out the Thermogravimetric analysis successfully. We also thank the anonymous referees, who significantly contributed to improving the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PL. RM. Palaniappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramod, K.S., Vijayasundaram, V., Krishnakumar, N. et al. The effect of titanium dioxide exposure on the thermal properties of Zebrafish (Danio rerio) bones. J Therm Anal Calorim 108, 133–139 (2012). https://doi.org/10.1007/s10973-011-1774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1774-4

Keywords

Navigation