Skip to main content
Log in

Thermal decomposition kinetics of potassium iodate

Part I. The effect of particle size on the rate and kinetics of decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The rate and kinetics of the thermal decomposition of potassium iodate (KIO3) has been studied as a function of particle size, in the range 63–150 μm, by isothermal thermogravimetry at different temperatures, 790, 795, 800 and 805 K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of all samples of KIO3 at all temperatures studied. The isothermal decomposition of all samples of KIO3 was subjected to both model-fitting and model-free (isoconversional) kinetic methods of analysis. It has been observed that the activation energy values are independent of the particle size. Isothermal model-fitting analysis shows that the thermal decomposition kinetics of all the samples of KIO3 studied can be best described by the contracting cube equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  2. Stern KH. High temperature properties and thermal decomposition of inorganic salts with oxy anions. Florida: CRC; 2001.

    Google Scholar 

  3. Vyazovkin S. Thermal analysis. Anal Chem. 2004;76:3299–312.

    Article  Google Scholar 

  4. Deng C, Cai J, Liu R. Kinetic analysis of solid state reactions: evaluation of approximations to temperature integral and their applications. Solid State Sci. 2009;11:1375–9.

    Article  CAS  Google Scholar 

  5. Vecchio S, Rodante F, Tomassetti M. Thermal stability of disodium and calcium phosphomycin and the effects of the excipients evaluated by thermal analysis. J Pharm Biomed Anal. 2001;24:1111–23.

    Article  CAS  Google Scholar 

  6. Huang Y, Cheng Y, Alexander K, Dollimore D. The thermal analysis study of the drug captopril. Thermochim Acta. 2001;367:43–58.

    Article  Google Scholar 

  7. Dollimore D, O’Connell C. A comparison of the thermal decomposition of preservatives, using thermogravimetry and rising temperature kinetics. Thermochim Acta. 1998;324:33–48.

    Article  CAS  Google Scholar 

  8. Halikia I, Neou-Syngouna P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320:75–88.

    Article  CAS  Google Scholar 

  9. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  10. Rodante F, Vecchio S, Tomassetti M. Kinetic analysis of thermal decomposition for penicillin sodium salts: model-fitting and model-free methods. J Pharm Biomed Anal. 2002;29:1031–43.

    Article  CAS  Google Scholar 

  11. Brown ME. Introduction to thermal analysis: techniques and applications. 2nd ed. The Netherlands: Kluwer; 2001.

    Google Scholar 

  12. Malek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.

    Article  CAS  Google Scholar 

  13. Zhou D, Schmitt EA, Zhang GG, Law D, Vyazovkin S, Wight CA, Grant DJW. Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches. J Pharmaceutical Sci. 2003;92:1779–91.

    Article  CAS  Google Scholar 

  14. Benderskii VA, Makarov DE, Wight CA. Chemical dynamics at low temperatures. New York: Wiley; 1994. p. 385.

    Google Scholar 

  15. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state, comprehensive chemical kinetics, Vol. 22. Amsterdam: Elsevier; 1980. pp 340.

    Google Scholar 

  16. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem. 1997;101A:8279–84.

    Google Scholar 

  17. Brill TB, James KJ. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev. 1993;93:2667–92.

    Article  CAS  Google Scholar 

  18. Mark HF, Bikales NM, Overberger CG, Menges G, editors. Encyclopedia of polymer science and engineering. New York: Wiley; 1989. p. 231–690.

    Google Scholar 

  19. Vyazovkin S, Wight CA. Isothermal and nonisothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  20. Dollimore D. Thermal analysis. Chem Rev. 1996;68:63–72.

    CAS  Google Scholar 

  21. Galwey AK. Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  CAS  Google Scholar 

  22. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.

    Article  CAS  Google Scholar 

  23. Kotler JM, Hinman NW, Richardson CD, Scott JR. J Thermal Anal Calorim. 2010;102:23–9.

    Article  CAS  Google Scholar 

  24. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition behaviour of potassium and sodium jasorite synthesized in the presence of methyl amine and alanine. J Thermal Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  25. Muraleedharan K, Kannan MP, Ganga Devi T. Thermal decomposition kinetics of potassium iodate. J Thermal Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  26. Solymosi F. Structure and stability of salts of halogen oxyacids in the solid phase. London: Wiley; 1977.

    Google Scholar 

  27. Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–97.

    Article  CAS  Google Scholar 

  28. Bhatta D, Padhee G. Role of γ-irradiation and Ba2+ doping on the isothermal decomposition of caesium bromate. J Thermal Anal Calorim. 1991;37:2693–9.

    Article  CAS  Google Scholar 

  29. Vyazovkin S. Model-free kinetics staying free of multiplying entities without necessity. J Thermal Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  30. Kenneth Shaw, editor. Principles of solid-state chemistry. Reactions in solids. London: MacLaren; 1968. p. 21.

    Google Scholar 

  31. Nakamura H, Sakumoto K, Hara Y, Ochi K. Thermal analysis of sodium azide. J Hazard Mat. 1994;38:1–12.

    Article  CAS  Google Scholar 

  32. Bircumshaw LL, Newman BH. The thermal decomposition of ammonium perchlorate. II. The kinetics of the decomposition, the effect of particle size, and discussion of results. Proc Roy Soc Lond. 1955;A227:228–41.

    Google Scholar 

  33. Pai Verneker VR, Kishore K, Kannan MP. Effect of pretreatment on the sublimation of ammonium perchlorate. J Appl Chem Biotechnol. 1977;27:309–17.

    Article  Google Scholar 

  34. Maycock JN, Pai Verneker VR, Rouch L Jr. Influence of growth parameters on the reactivity of ammonium perchlorate. Inorg Nuc Chem Lett. 1968;4:119–23.

    Article  CAS  Google Scholar 

  35. Boldyrev VV, Avvakumov L. Mechanochemistry of inorganic solids. Russ Chem Rev. 1971;40:847–59.

    Article  Google Scholar 

  36. Pai Verneker VR, Maycock JN. The thermal decomposition of ammonium perchlorate at low temperature. J Inorg Nucl Chem. 1967;29:2723–30.

    Article  Google Scholar 

  37. Mitchell JW, DeVries RC, Roberts RW, Cynon P, editors. Reactivity of solids. New York: Wiley; 1969. p. 287.

    Google Scholar 

  38. Huang Y, Risha GA, Yang V, Yetter RA. Effect of particle size on combustion of aluminum particle dust in air. Combust Flame. 2009;156:5–13.

    Article  CAS  Google Scholar 

  39. Chou CJ, Olsen FA. Isothermal decomposition of isothiocyanatopentaamine cobalt(III) perchlorate. Particle size effect. Anal Chem. 1972;44:1841–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraleedharan, K. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim 109, 237–245 (2012). https://doi.org/10.1007/s10973-011-1711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1711-6

Keywords

Navigation