Skip to main content
Log in

The effect of alkaline pretreatment on the thermal decomposition of hemp

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The goal of this study was to clarify the effect of alkaline pretreatments on the thermal decomposition and composition of industrial hemp (Cannabis sativa L.) samples. Thermogravimetric/mass spectrometric measurements (TG/MS) have been performed, on untreated, hot water washed, and alkali-treated hemp samples. The main differences between the thermal decomposition of the samples are interpreted in terms of the different alkali ion contents which have been determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) method. Principal component analysis (PCA) has been used to find statistical correlations between the data. Correlations have been obtained between the parameters of the thermal decomposition and the alkali ion content as well as the altered chemical structure of the samples. The differences in the thermal behavior of the samples are explained by the different K+ and Na+ contents and the changed structure of the hemicellulose component of the samples due to the pretreatments. The more alkali ions remain in the hemp samples after the alkali treatment, the more ash, char and lower molecular products are formed during thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E. Functionalization, compatibilization and properties of polypropylene composites with hemp fibres. Compos Sci Technol. 2006;66:2218–30.

    Article  CAS  Google Scholar 

  2. Placet V. Characterization of the thermo-mechanical behaviour of hemp fibres intended for the manufacturing of high performance composites. Composites A. 2009;40:1111–8.

    Article  Google Scholar 

  3. Heikkinen JM, Hordijk JC, de Jong W, Spliethoff H. Thermogravimetry as a tool to classify waste components to be used for energy generation. J Anal Appl Pyrolysis. 2004;71:883–900.

    Article  CAS  Google Scholar 

  4. Garcia-Jaldon C, Dupeyre D, Vignon MR. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy. 1998;14:251–60.

    Article  CAS  Google Scholar 

  5. van der Wert HMG, van der Veen JEH, Bouma ATM, ten Cate M. Quality of hemp (Cannabis sativa L.) stems as a raw material for paper. Ind Crop Prod. 1994;2:219–27.

    Article  Google Scholar 

  6. Ouajai S, Shanks RA. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab. 2005;89:327–35.

    Article  CAS  Google Scholar 

  7. Kadar Z, Szengyel Z, Reczey K. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod. 2004;20:103–10.

    Article  CAS  Google Scholar 

  8. Lee J. Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol. 1997;56:1–24.

    Article  CAS  Google Scholar 

  9. Meszaros E, Jakab E, Gaspar M, Reczey K, Varhegyi G. Thermal behavior of corn fibers and corn fiber gums prepared in fiber processing to ethanol. J Anal Appl Pyrolysis. 2009;85:11–8.

    Article  CAS  Google Scholar 

  10. Sun R, Lawther JM, Banks WB. Influence of alkaline pre-treatments on the cell wall components wheat straw. Ind Crop Prod. 1995;4:127–45.

    Article  CAS  Google Scholar 

  11. Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites A. 2008;39:514–22.

    Google Scholar 

  12. Ballesteros M, Olivia JM, Negro MJ, Manzanares P, Ballesteros I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 2004;39:1843–8.

    Article  CAS  Google Scholar 

  13. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem. 2004;39:1533–42.

    Article  CAS  Google Scholar 

  14. Buryan P, Staff M. Pyrolysis of waste biomass. J Therm Anal Calorim. 2008;93:637–40.

    Article  CAS  Google Scholar 

  15. Meszaros E, Jakab E, Varhegyi G, Tovari P. Thermogravimetry/mass spectrometry analysis of energy crops. J Therm Anal Calorim. 2007;88:477–82.

    Article  CAS  Google Scholar 

  16. Meszaros E, Jakab E, Varhegyi G, Szepesvary P, Marosvolgyi B. Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation. J Anal Appl Pyrolysis. 2004;72:317–28.

    Article  CAS  Google Scholar 

  17. Streibel T, Geissler R, Saraji-Bozorgzad M, Sklorz M, Kaisersberger E, Denner T, Zimmermann R. Evolved gas analysis (EGA) in TG and DSC with single photon ionisation mass spectrometry (SPI-MS): molecular organic signatures from pyrolysis of soft and hard wood, coal, crude oil and ABS polymer. J Therm Anal Calorim. 2009;96:795–804.

    Article  CAS  Google Scholar 

  18. Streibel T, Fendt A, Geissler R, Kaisersberger E, Denner T, Zimmermann R. Thermal analysis/mass spectrometry using soft photo-ionisation for the investigation of biomass and mineral oils. J Therm Anal Calorim. 2009;97:615–9.

    Article  CAS  Google Scholar 

  19. Mothe CG, de Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–5.

    Article  CAS  Google Scholar 

  20. Souza BS, Moreira APD, Teixeira AMFR. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim. 2009;97:637–42.

    Article  CAS  Google Scholar 

  21. Shafizadeh F. Pyrolysis and combustion of cellulosic materials. Adv Carbohydr Chem Biochem. 1968;23:419–74.

    CAS  Google Scholar 

  22. Bridgwater AV. Fast pyrolysis of biomass: a handbook, vol. 2. London: CPL Press; 2002.

    Google Scholar 

  23. Meier D, Faix O. State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol. 1999;68:71–7.

    Article  CAS  Google Scholar 

  24. Antal MJ Jr, Varhegyi G. Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Resour. 1995;34:703–17.

    Article  CAS  Google Scholar 

  25. DeGroot WF, Shafizadeh F. The influence of exchangeable cations on the carbonization of biomass. J Anal Appl Pyrolysis. 1984;6:217–32.

    Article  CAS  Google Scholar 

  26. Sekiguchi Y, Shafizadeh F. The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. J Appl Polym Sci. 1984;29:1267–86.

    Article  CAS  Google Scholar 

  27. Varhegyi G, Antal MJ Jr, Szekely T, Till F, Jakab E. Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 1. Avicel cellulose in the presence and absence of catalysts. Energy Fuel. 1988;2:267–72.

    Article  CAS  Google Scholar 

  28. Khelfa A, Finqueneisel G, Auber M, Weber JV. Influence of some minerals on the cellulose thermal degradation mechanism—thermogravimetric and pyrolysis-mass spectrometry studies. J Therm Anal Calorim. 2008;92:795–9.

    Article  CAS  Google Scholar 

  29. Dobele G, Rossinskaja G, Dizhbite T, Telysheva G, Meier D, Faix O. Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J Anal Appl Pyrolysis. 2005;74:401–5.

    Article  CAS  Google Scholar 

  30. Torri C, Lesci IG, Fabbri D. Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate. J Anal Appl Pyrolysis. 2009;84:25–30.

    Article  CAS  Google Scholar 

  31. Nowakowski DJ, Jones JM. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. J Anal Appl Pyrolysis. 2008;83:12–25.

    Article  CAS  Google Scholar 

  32. Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J Anal Appl Pyrolysis. 2008;81:80–7.

    Article  CAS  Google Scholar 

  33. Ren QQ, Zhao CS, Wu X, Liang C, Chen XP, Shen JZ, Wang Z. Catalytic effect of Fe, Al and Si on the formation of NOx precursors and HCl during straw pyrolysis. J Therm Anal Calorim. 2010;99:301–6.

    Article  CAS  Google Scholar 

  34. Jakab E, Faix O, Till F, Szekely T. The effect of cations on the thermal decomposition of lignins. J Anal Appl Pyrolysis. 1993;25:185–94.

    Article  CAS  Google Scholar 

  35. Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrolysis. 1997;40–41:171–86.

    Article  Google Scholar 

  36. Rachini A, Le Troedec M, Peyratout C, Smith A. Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and inert atmosphere. J Appl Polym Sci. 2009;112:226–34.

    Article  CAS  Google Scholar 

  37. del Rio JC, Martinez AT, Gutierrez A. Presence of 5-hydroxyguaiacyl units as native lignin constituents in plants as seen by Py-GC/MS. J Anal Appl Pyrolysis. 2007;79:33–8.

    Article  CAS  Google Scholar 

  38. del Rio JC, Gutierrez A, Rodriguez IM, Ibarra D, Martinez AT. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FTIR. J Anal Appl Pyrolysis. 2007;79:39–46.

    Article  CAS  Google Scholar 

  39. Gutierrez A, Rodriguez IM, del Rio JC. Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulp. J Agric Food Chem. 2006;54:2138–44.

    Article  CAS  Google Scholar 

  40. Kristensen R, Coulson S, Gordon A. THM PyGC-MS of wood fragment and vegetable fibre forensic samples. J Anal Appl Pyrolysis. 2009;86:90–8.

    Article  CAS  Google Scholar 

  41. Szabo P, Varhegyi G, Till F, Faix O. Thermogravimetric/mass spectrometric characterization of two energy crops, Arundo donax and Miscanthus sinensis. J Anal Appl Pyrolysis. 1996;36:179–90.

    Article  CAS  Google Scholar 

  42. Sebestyen Z. Alkali pretreatment of hemp with the goal of bioethanol production. Master Thesis, 2008.

  43. Jakab E, Liu K, Meuzelaar HLC. Thermal decomposition of wood and cellulose in the presence of solvent vapors. Ind Eng Chem Resour. 1997;36:2087–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian National Research Fund (OTKA K61504, K81959, K72710, and PD75740). The authors are grateful to Dr. Gábor Várhegyi for data analysis programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Sebestyén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebestyén, Z., May, Z., Réczey, K. et al. The effect of alkaline pretreatment on the thermal decomposition of hemp. J Therm Anal Calorim 105, 1061–1069 (2011). https://doi.org/10.1007/s10973-010-1056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1056-6

Keywords

Navigation