Skip to main content
Log in

Thermodynamics of inclusion complex formation of hydroxypropylated α- and β-cyclodextrins with aminobenzoic acids in water

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Calorimetry, densimetry, 1H NMR and UV–vis spectroscopy were used to characterize inclusion complex formation of hydroxypropylated α- and β-cyclodextrins with meta- and para-aminobenzoic acids in aqueous solutions at 298.15 K. Formation of more stable inclusion complexes between para-aminobenzoic acid and cyclodextrins was observed. The binding of aminobenzoic acids with hydroxypropyl-α-cyclodextrin was found to be enthalpy-governed owing to the prevalence of van der Waals interactions and possible H-binding. Complex formation of hydroxypropyl-β-cyclodextrin with both acids is mainly entropy driven. The increased entropy contribution observed in this case is determined by dehydration of solutes occurring during the revealed deeper insertion of aminobenzoic acids into the cavity of hydroxypropyl-β-cyclodextrin. By comparing complex formation of aminobenzoic acids with native and substituted cyclodextrins it was found that the availability of hydroxypropyl groups slightly influenced the thermodynamic parameters and did not change the binding mode or driving forces of interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.

    Article  CAS  Google Scholar 

  2. De Lisi R, Lazzara G. Aggregation in aqueous media of tri-block copolymers tuned by the molecular selectivity of cyclodextrins. Therm Anal Calorim. 2009;97:797–803.

    Article  Google Scholar 

  3. Novăk Cs, Éhen Z, Fodor M, Jiesinszky L, Orgoványi J. Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. J Therm Anal Calorim. 2006;84:693–701.

    Article  Google Scholar 

  4. Terekhova IV, Kumeev RS, Alper GA. Inclusion complex formation of α- and β-cyclodextrins with aminobenzoic acids in aqueous solution studied by 1H NMR. J Incl Phenom Macrocycl Chem. 2007;59:301–6.

    Article  CAS  Google Scholar 

  5. Terekhova IV, Obukhova NA. Study on inclusion complex formation of m-aminobenzoic acid with native and substituted β-cyclodextrins. J Solut Chem. 2007;36:1167–76.

    Article  CAS  Google Scholar 

  6. Terekhova IV. Volumetric and calorimetric study on complex formation of cyclodextrins with aminobenzoic acids. Mend Commun. 2009;19:110–2.

    Article  CAS  Google Scholar 

  7. Shuang S, Yang Y, Pan J. Study on molecular recognition of para-aminobenzoic acid species by α-, β- and hydroxypropyl-β-cyclodextrin. Anal Chim Acta. 2002;458:305–10.

    Article  CAS  Google Scholar 

  8. Yang Y, Shuang S-M, Chao J-B, Zhang G-M, Ding H-Y, Dong C. Study on the molecular recognition interaction of β-cyclodextrin with aminobenzoic acid isomer. Acta Chim Sin. 2004;62:176–82.

    CAS  Google Scholar 

  9. Setniča V, Urbanová M, Král V, Volka K. Interactions of cyclodextrins with aromatic compounds studied by vibrational circular dichroism spectroscopy. Spectrochim Acta A. 2002;58:2983–9.

    Article  Google Scholar 

  10. Harata K. Induced circular dichroism of cycloamylose complexes with meta- and para-disubstituted benzenes. Bioorg Chem. 1981;10:255–65.

    Article  CAS  Google Scholar 

  11. Tanaka M, Kawaguchi Y, Nakae M, Mizobuchi Y, Shono T. Separation of disubstituted benzene isomers on chemically bonded cyclodextrin stationary phases. J Chromatogr A. 1982;246:207–14.

    Article  CAS  Google Scholar 

  12. Lewis EA, Hansen LD. Thermodynamics of binding of guest molecules to α- and β-cyclodextrins. J Chem Soc Perkin Trans. 1973;2:2081–85.

    Article  Google Scholar 

  13. Stalin T, Rajendiran N. Intramolecular charge transfer effects on 3-aminobenzoic acid. Chem Phys. 2006;322:311–22.

    Article  CAS  Google Scholar 

  14. Stalin T, Shanthi B, Vasantha Rani P, Rajendiran N. Solvatochromism, prototropism and complexation of p-aminobenzoic acid. J Incl Phenom Macrocycl Chem. 2006;55:21–9.

    Article  CAS  Google Scholar 

  15. Stalin T, Rajendiran N. Intramolecular charge transfer associated with hydrogen bonding effects on 2-aminobenzoic acid. J Photochem Photobiol A. 2006;182:137–50.

    Article  CAS  Google Scholar 

  16. Zhang Y, Sh Yu, Bao F. Crystal structure of cyclomaltoheptaose (β-cyclodextrin) complexes with p-aminobenzoic acid and o-aminobenzoic acid. Carbohydr Res. 2008;343:2504–8.

    Article  CAS  Google Scholar 

  17. Picker P, Tremblay E. A high-precision digital readout flow densimeter for liquids. J Solut Chem. 1974;3:377–84.

    Article  CAS  Google Scholar 

  18. Christensen JJ, Wrathall DP, Izatt RM, Tolman DO. Thermodynamics of proton dissociation in dilute aqueous solution. IX. pK, ΔH 0, and ΔS 0 values for proton ionization from o-, m-, and p-aminobenzoic acids and their methyl esters at 25. J Phys Chem. 1967;71:3001–6.

    Article  CAS  Google Scholar 

  19. Gelb RI, Schwartz LM, Bradshaw JJ, Laufer DA. Acid dissociation of cyclohexaamylose and cycloheptaamylose. Bioorg Chem. 1980;9:299–304.

    Article  CAS  Google Scholar 

  20. Liu L, Guo Q-X. The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem. 2002;42:1–14.

    Article  CAS  Google Scholar 

  21. He Y, Wu C, Kong WJ. A theoretical and experimental study of water complexes of m-aminobenzoic acid mABA·(H2O) n (n = 1 and 2). J Phys Chem A. 2005;109:748–53.

    Article  CAS  Google Scholar 

  22. Simova S, Schneider H.-J. NMR analyses of cyclodextrin complexes with substituted benzoic acids and benzoate anions. J Chem Soc Perkin Trans. 2000;2:1717–22.

    Article  Google Scholar 

  23. Terekhova IV, De Lisi R, Lazzara G, Milioto S, Muratore N. Volume and heat capacity studies to evidence interactions between cyclodextrins and nicotinic acid in water. J Therm Anal Calorim. 2008;92:285–90.

    Article  CAS  Google Scholar 

  24. De Lisi R, Milioto S, Pellerito A, Inglese A. Thermodynamic properties of sodium n-alkanecarboxylates in water and in water + cyclodextrin mixtures. Langmuir. 1998;14:6045–53.

    Article  Google Scholar 

  25. Wilson LD, Verrall RE. A volumetric study of β-cyclodextrin/hydrocarbon and β-cyclodextrin/fluorocarbon surfactant inclusion complexes in aqueous solution. J Phys Chem. 1997;101:9270–7.

    Article  CAS  Google Scholar 

  26. Spildo K, Høiland H. Complex formation between alkane-α,ω-diols and cyclodextrins studied by partial molar volume and compressibility measurements. J Solut Chem. 2002;31:149–64.

    Article  CAS  Google Scholar 

  27. Friedman HL, Krishnan CV. In: Franks F, editor. Water, a comprehensive treatise, vol. 3, chap. 1. New York: Plenum Press; 1973.

  28. Manor PC, Saenger W. Topography of cyclodextrin inclusion complexes. III Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimmer inclusion complex. J Am Chem Soc. 1974;96:3630–9.

    Article  CAS  Google Scholar 

  29. Lindner K, Saenger W. β-Cyclodextrin-dodecahydrat: haufung von wassermolekulen in einer hydrophoben huhlund. Angew Chem. 1978;90:738–40.

    Article  CAS  Google Scholar 

  30. Fukahori T, Kondo M, Nishikawa S. Dynamic study of interaction between β-cyclodextrin and aspirin by the ultrasonic relaxation method. J Phys Chem B. 2006;110:4487–91.

    Article  CAS  Google Scholar 

  31. González-Gaitano G, Crespo A, Compostizo A, Tardajos G. Study at a molecular level of the transfer process of a cationic surfactant from water to β-cyclodextrin. J Phys Chem B. 1997;101:4413–21.

    Article  Google Scholar 

  32. Kondo M, Nishikawa S. Inclusion kinetics of a nucleotide into a cyclodextrin cavity by means of ultrasonic relaxation. J Phys Chem B. 2007;111:13451–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Koźbiał and H. Szczogryn from the Institute of Physical Chemistry of PAS for their help with calorimetric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Terekhova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielenkiewicz, W., Terekhova, I.V., Wszelaka-Rylik, M. et al. Thermodynamics of inclusion complex formation of hydroxypropylated α- and β-cyclodextrins with aminobenzoic acids in water. J Therm Anal Calorim 101, 15–23 (2010). https://doi.org/10.1007/s10973-010-0797-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0797-6

Keywords

Navigation