Skip to main content
Log in

Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the paper, the two chemically modified β-cyclodextrin derivatives of 4,4´-diaminodiphenyl ether-bridged-bis-β-cyclodextrins (ODA-bis-β-CD) and p-aminobenzenesulfonic acid-β-cyclodextrin (ABS-β-CD) were synthesized, and then these two β-cyclodextrin derivatives were respectively formed into inclusion complexes with benzophenone (BP) by co-precipitation method. The structure of the inclusion complexes were characterized by UV/vis spectroscopy, FT-IR spectroscopy, elemental analysis, 1H NMR spectroscopy and XRD. Spectral titration was performed to study the inclusion behavior of the inclusion complexes. These experiments indicated that two inclusion complexes were formed at a stoichiometric ratio of 1:1 and the inclusion stability constants at different temperatures were calculated using the Benesi–Hildebrand (B–H) equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were obtained. As a result, it was found that the two chemically modified β-cyclodextrins containing BP were exothermic and spontaneous process (ΔG° < 0), and the processes of inclusion complexation were mainly enthalpy driven with negative or minor negative entropic contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1358 (1997)

    Article  CAS  Google Scholar 

  2. Thombre, R.S., Kanekar, P.P., Rajwade, J.M.: Production of cyclodextrin glycosyl transferase from Alkaliphilic paenibacillus Sp. l55 MCM B-1034 isolated from Alkaline Lonar Lake, India. Int. J. Pharm. Bio Sci. 4(1), B515-B523 (2013)

    Google Scholar 

  3. Couto, A.S., Salústio, P., Cabral-Marques, H.: Cyclodextrins. Springer, Berlin (2015)

    Google Scholar 

  4. Mitra, P., Banerjee, M., Biswas, S., et al.: Protein interactions of Merocyanine 540: spectroscopic and crystallographic studies with lysozyme as a model protein. J. Photochem. Photobiol. B 121(6), 46–56 (2013)

    Article  CAS  Google Scholar 

  5. Chowdary, K.P.: Nimesulide and β-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev. Ind. Pharm. 26(26), 1217–1220 (2000)

    Article  CAS  Google Scholar 

  6. Paczkowska, M., Mizera, M., Szymanowskapowałowska, D., et al.: β-Cyclodextrin complexation as an effective drug delivery system for meropenem. Eur. J. Pharm. Biopharm. 99, 24–34 (2015)

    Article  Google Scholar 

  7. Lv, S.W., Wang, X.G., Mu, Y., et al.: A novel dicyclodextrinyl diselenide compound with glutathione peroxidase activity. FEBS J. 274(15), 3846–3854 (2010)

    Article  Google Scholar 

  8. Cao, A., Ai, H., Ding, Y., et al.: Biocompatible hybrid film of β-cyclodextrin and ionic liquids: a novel platform for electrochemical biosensing. Sens. Actuators B 155(2), 632–638 (2011)

    Article  CAS  Google Scholar 

  9. Huang, Q., Jiang, L., Liang, W., et al.: Inherently chiral azonia[6]helicene-modified β-cyclodextrin: synthesis, characterization, and chirality sensing of underivatized amino acids in water. J. Org. Chem. 81(8), 3430–3434 (2016)

    Article  CAS  Google Scholar 

  10. Yao, J., Yan, Z., Ji, J., et al.: Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin. J. Am. Chem. Soc. 136(19), 6916–6919 (2014)

    Article  CAS  Google Scholar 

  11. Wang, Q., Yang, C., Ke, C., et al.: Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by γ-cyclodextrins. Chem. Commun. 47(24), 6849–6851 (2011)

    Article  CAS  Google Scholar 

  12. Yan, Z., Huang, Q., Liang, W., et al.: Enantiodifferentiation in the photoisomerization of (Z,Z)-1,3-cyclooctadiene in the cavity of γ-cyclodextrin-curcubit[6]uril-wheeled [4]rotaxanes with an encapsulated photosensitizer. Org. Lett. 19(4), 898–901 (2017)

    Article  CAS  Google Scholar 

  13. Guo, X., Wang, Z., Zuo, L., et al.: Quantitative prediction of enantioseparation using β-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Analyst 139(24), 6511 (2014)

    Article  CAS  Google Scholar 

  14. Serio, N., Levine, M.: Efficient extraction and detection of aromatic toxicants from crude oil and tar balls using multiple cyclodextrin derivatives. Mar. Pollut. Bull. 95(1), 242–247 (2015)

    Article  CAS  Google Scholar 

  15. Hu, C., Liu, H.J., Peng, L., et al.: Synthesis of ethylamine-bridged β-cyclodextrins and adsorption properties of thorium. J. Radioanalyt. Nucl. Chem. 308(1), 251–259 (2016)

    Article  CAS  Google Scholar 

  16. Wang X, Brusseau, M.L.: Solubilization of some low-polarity organic compounds by hydroxypropyl-beta-cyclodextrin. Environ Sci Technol. 27(13), 2821–2825 (2015)

    Article  Google Scholar 

  17. Tan, L.L., Yang, Y.W., Liu, Y.P., et al. One-pot synthesis of tetrafluoro-and tetrachlorofluorescein derivatives and their stabilization by β-cyclodextrin. Chin. J. Chem. 31(5), 612–616 (2013)

    Article  CAS  Google Scholar 

  18. Braun, D., Rabie, S.T., Khaireldin, N.Y., et al.: Preparation and evaluation of some benzophenone terpolymers as photostabilizers for rigid PVC. J. Vinyl Addit. Technol. 17(3), 147–155 (2011)

    Article  CAS  Google Scholar 

  19. Kim, S., Choi, K.: Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. Environ. Int. 70, 143–157 (2014)

    Article  CAS  Google Scholar 

  20. Zhang, Z., Ren, N., Li, Y.F., et al.: Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environm. Sci. Technol. 45(9), 3909–3916 (2011)

    Article  CAS  Google Scholar 

  21. Tsui, M.M., Leung, H.W., Wai, T.C., et al.: Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan. Hazard. Mater. 292, 180–187 (2015)

    Article  CAS  Google Scholar 

  22. Zhang, T., Sun, H., Qin, X., et al.: Benzophenone-type UV filters in urine and blood from children, adults, and pregnant women in China: partitioning between blood and urine as well as maternal and fetal cord blood. Sci. Total Environ. 461–462(7), 49–55 (2013)

    Article  Google Scholar 

  23. Liu, H., Sun, P., Liu, H., et al.: Acute toxicity of benzophenone-type UV filters for photobacterium phosphoreum and daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere. 135, 182–188 (2015)

    Article  CAS  Google Scholar 

  24. Amar, S.K., Goyal, S., Dubey, D., et al.: Benzophenone 1 induced photogenotoxicity and apoptosis via release of cytochrome c and Smac/DIABLO at environmental UV radiation. Toxicol. Lett. 239(3), 182–193 (2015)

    Article  CAS  Google Scholar 

  25. Pollack, A.Z., Louis, G.B., Chen, Z., et al.: Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environ. Res. 137, 101–107 (2015)

    Article  CAS  Google Scholar 

  26. Jing, P.F., Liu, H.J., Zhang, Q., et al.: Study on adsorption of trace thorium(IV) using 6-o-monotosyl-deoxy-β-cyclodextrin inclusion complex of dibenzoyl. J. Radioanal. Nucl. Chem. 308(1), 287–295 (2016)

    Article  CAS  Google Scholar 

  27. Sapkal, N.P., Kilor, V.A., Bhursari, K.P., et al.: Evaluation of some methods for preparing gliclazide-β-cyclodextrin inclusion complexes. Pharm. Res. 6(4), 833–840 (2007)

    Google Scholar 

  28. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1753 (1998)

    Article  CAS  Google Scholar 

  29. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  30. Prabu, S., Sivakumar, K., Swaminathan, M., et al.: Preparation and characterization of host-guest system between inosine and β-cyclodextrin through inclusion mode [J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147(2), 151–157 (2015)

    Article  CAS  Google Scholar 

  31. Poór, M., Matisz, G., Kunsági-Máté, S., et al.: Fluorescence spectroscopic investigation of the interaction of citrinin with native and chemically modified cyclodextrins. J. Lumin. 172(1), 23–28 (2016)

    Article  Google Scholar 

  32. Sancho, M.I., Andujar, S., Porasso, R.D., et al.: Theoretical and experimental study of inclusion complexes of β-cyclodextrins with chalcone and 2′,4′-dihydroxychalcone. J. Phys. Chem. B 120(12), 3000–3011 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 11375084), Nature Science Foundation of Hunan (No. 2017JJ4046), Hunan Provincial Innovation Foundation For Postgraduate (No. CX2017B523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Liu, H., Qi, C. et al. Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone. J Incl Phenom Macrocycl Chem 90, 321–329 (2018). https://doi.org/10.1007/s10847-018-0787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0787-z

Keywords

Navigation