Skip to main content
Log in

Calorimetric study of ternary binder of calcium aluminate cement, Portland-limestone cement and FGD gypsum

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To use flue gas desulfurization (FGD) gypsum and limestone as supplement of cement, conduction calorimetry was applied to investigate the early hydration of ternary binder of calcium aluminate cement (CAC), Portland-limestone cement (PLC), and FGD gypsum, supplemented with the determination of setting times and X-ray diffraction (XRD) analysis. Different exothermal profiles were presented in two groups of pastes, in which one group (group A) sets the mass ratio of FGD gypsum/CAC at 0.25 and the other group (group B) sets the mass ratio of PLC/CAC at 0.25. Besides the two common exothermal peaks in cement hydration, a third exothermal peak appears in the pastes with 5–15% FGD gypsum after gypsum is depleted. It is found that not PLC but FGD gypsum plays the key role in such ternary binder where the reaction of ettringite formation dominates the hydration process. PLC accelerates the hydration of ternary binder, which mainly attributes to the nucleating effect of fine limestone particles and PC clinker. The modified hydration process and mechanism in this case is well visualized by the means of calorimetry and it helps us to optimize such design of ternary cementitious material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hamm H, Kersten HJ, Hueller R. 25 years experience gained in the European Gypsum Industry with the use of FGD gypsum. Cem Int. 2004;4:92–102.

    Google Scholar 

  2. Guo XL, Shi HS. Thermal treatment and utilization of flue gas desulphurization gypsum as an admixture in the cement and concrete. Constr Build Mater. 2008;22:1471–6.

    Article  Google Scholar 

  3. Tzouvalasl G, Rantis G, Tsimas S. Alternative calcium-sulfate-bearing materials as cement retarders: Part II. FGD gypsum. Cem Concr Res. 2004;34:2119–25.

    Article  Google Scholar 

  4. Glasser FP, Zhang L. High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem Concr Res. 2001;31:1881–6.

    Article  CAS  Google Scholar 

  5. Péra J, Ambroise J. New applications of calcium sulfoaluminate cement. Cem Concr Res. 2004;34:671–6.

    Article  Google Scholar 

  6. Glasser FP, Zhang L, Zhou Q. Reactions of aluminate cements with calcium sulphate. In: Proceedings of international conference on calcium aluminate cements (CAC), Heriot-Watt University, Edinburgh, Scotland, 2001, pp. 551–64.

  7. Deng M, Tang M. Formation and expansion of ettringite crystals. Cem Concr Res. 1994;24:119–26.

    Article  Google Scholar 

  8. Adams LD. Ettringite, the positive side. In: Proceedings of the 19th international conference on cement microscopy, Cincinnati, Ohio, ICMA, Duncanville, TX, 1997, pp. 1–13.

  9. Amathieu L, Estienne F. Impact of the conditions of ettringite formation on the performance of products based on CAC+CS+OPC. Weimar: 15. Internationale Baustofftagung; 2003. pp. 1-0253–63.

  10. European Committee for Standardization. Cement: composition, specifications and conformity Criteria, Part 1: common Cements, EN 197-1, EN/TC51/WG 6 rev., 2000.

  11. Lothenbach B, Saout GL, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cem Concr Res. 2008;38:848–60.

    Article  CAS  Google Scholar 

  12. Poppe AM, Schutter GD. Cement hydration in the presence of high filler contents. Cem Concr Res. 2005;35:2290–9.

    Article  CAS  Google Scholar 

  13. Dweck J, Buchler PM, Coelho ACV, Cartledge K. Hydration of a Portland cement blended with calcium carbonate. Thermochim Acta. 2000;346:105–13.

    Article  CAS  Google Scholar 

  14. Kuzel HJ, Baier H. Hydration of calcium aluminate cements in the presence of calcium carbonate. Eur J Mineral. 1996;8:129–41.

    Article  CAS  Google Scholar 

  15. Darweesh HHM. Limestone as an accelerator and filler in limestone-substituted alumina cement. Ceram Int. 2004;30:145–50.

    Article  CAS  Google Scholar 

  16. Gu P, Beaudoin JJ. A conduction calorimetric study of early hydration of ordinary Portland cement/high alumina cement pastes. J Mater Sci. 1997;32:3875–81.

    Article  CAS  Google Scholar 

  17. Evju C. Initial hydration of cementitious systems using a simple isothermal calorimeter and dynamic correction. J Therm Anal Calorim. 2003;71:829–40.

    Article  CAS  Google Scholar 

  18. Pacewska B, Blonkowski G, Wilińska I. Investigations of the influence of different fly ashes on cement hydration. J Therm Anal Calorim. 2006;86:179–86.

    Article  CAS  Google Scholar 

  19. Baert G, Hoste S, De Schutter G, De Belie N. Reactivity of fly ash in cement paste studied by means of thermagravimetry and isothermal calorimetry. J Therm Anal Calorim. 2008;94:485–92.

    Article  CAS  Google Scholar 

  20. Rahhal V, Cabrera O, Talero R, Delgado A. Calorimetry of portland cement with silica fume and gypsum additions. J Therm Anal Calorim. 2007;87:331–6.

    Article  CAS  Google Scholar 

  21. Rahhal V, Talero R. Calorimetry of Portland cement with metakaolins, quartz and gypsum additions. J Therm Anal Calorim. 2008;91:825–34.

    Article  CAS  Google Scholar 

  22. Roszczynialski W, Nocuń-Wczelik W. Studies of cementitious systems with new generation by-products from fluidized bed combustion. J Therm Anal Calorim. 2004;77:151–8.

    Article  CAS  Google Scholar 

  23. Sawków J, Nocuń-Wczelik W. Calorimetric studies of refractory corundum calcium aluminate composites. J Therm Anal Calorim. 2003;74:451–8.

    Article  Google Scholar 

  24. Gawlicki M, Nocuń-Wczelik W, Bąk Ł. Calorimetry in the studies of cement hydration. J Therm Anal Calorim. 2009. doi:10.1007/s10973-009-0158-5.

  25. Guan B, Lou W, Ye Q, Fu H, Wu Z, Calorimetric study of calcium aluminate cement blended with flue gas desulfurization gypsum. J Therm Anal Calorim. 2009. doi:10.1007/s10973-009-0107-3.

  26. Scrivener KL. High-performance concretes from calcium aluminate cement. Cem Concr Res. 1999;29:1215–23.

    Article  CAS  Google Scholar 

  27. Gu P, Fu Y, Xie P, Beaudoin JJ. A study of the hydration and setting behavior of OPC-HAC paste. Cem Concr Res. 1994;24:682–94.

    Article  CAS  Google Scholar 

  28. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford; 1997.

    Book  Google Scholar 

  29. Smrčková E, Palou M, Tomková V. Application of conduction calorimetry for study of the reactivity of C2S–C4A3Ŝ–CŜ–H. J Thermal Anal. 1996;46:597–605.

    Article  Google Scholar 

  30. El-Didamony H, Khalil KA, El-Atter MS. Physicochemical characteristics of fired clay-limestone mixes. Cem Concr Res. 2000;30:7–11.

    Article  CAS  Google Scholar 

  31. Regourd M, Thomassion JH, Baillif P, Touray JC. Study of the early hydration of Ca3SiO5 by X-ray photoelectron spectrometry. Cem Concr Res. 1980;10:223–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge greatly the financial support of this work by the fund of Chinese National Program for High Technology Research and Development (Project No. 2006AA03Z385), Science and Technology Plan of Zhejiang Province, China (Project No. 2007C23055) and the New Century 151 Talent Project of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, W., Guan, B. & Wu, Z. Calorimetric study of ternary binder of calcium aluminate cement, Portland-limestone cement and FGD gypsum. J Therm Anal Calorim 101, 119–127 (2010). https://doi.org/10.1007/s10973-009-0542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0542-1

Keywords

Navigation