Skip to main content
Log in

The influence of different additives on the early-stage hydration of calcium aluminate cement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of granite cutting waste and quartz sand on the early-stage hydration of calcium aluminate cement, Gorkal 70, was examined. The experiments were carried out at 25 and 50 °C temperature, when the water/cement ratio was equal to 0.5. It was determined that the mentioned additives have a significant influence on the calcium aluminate cement and its clinker hydration process at 25 °C: In the latter compound mixtures with granite cutting waste and quartz, the induction period was significantly shortened to 1 h, while, in case of calcium aluminate cement samples with additives, it was prolonged to 11 h in comparison with the pure system (10 h). It should be noted that the amount of granite cutting waste and quartz does not affect the hydration process, because the similar results were obtained, when 4 and 12% of additives were used. X-ray diffraction analysis data showed that the formation of products depends on the samples composition as well as hydration conditions. It was determined that, in clinker samples, the formation of final products at 25 °C proceeded through the intermediate compounds—C2AH8 and CAHX, while at 50 °C—directly. It was obtained that after 3 h of calcium aluminate cement hydration at 50 °C temperature two metastable hexagonal calcium aluminum hydrates, C2AH8 and CAHX, were formed. At the same time, in clinker samples, the stable phases—katoite and gibbsite, were formed. The obtained results were confirmed by simultaneous thermal analysis, microcalorimetry and X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baltakys K, Ilijina A, Bankauskaite A. Thermal properties and application of silica gel waste contaminated with F ions for C–S–H synthesis. J Therm Anal Calorim. 2015;121:145–54.

    Article  CAS  Google Scholar 

  2. Eurostat Waste statistics. 2017. http://ec.europa.eu/eurostat/statisticsexplained/index.php/Waste_statistics. Accessed 16 Aug 2017.

  3. Alyamac KE, Ince R. A preliminary concrete mix design for SCC with marble powders. Constr Build Mater. 2009;23:1201–10.

    Article  Google Scholar 

  4. Tchadjie LN, Djobo JNY, Ranjbar N, Tchahoute HK, Kenne BBD, Elimbi A, Njopwouo D. Potential of using granite waste as raw material for geopolymer synthesis. Ceram Int. 2016;42:3046–55.

    Article  CAS  Google Scholar 

  5. Soltan AMM, Kahl WA, EL-Raoof FA, El-Kaliouby BA, Serry MA, Abdel-Kader NA. Lightweight aggregates from mixtures of granite waste with clay. J Clean Prod. 2016;117:139–49.

    Article  CAS  Google Scholar 

  6. Sharma NK, Kumar P, Kumar S, Thomas BS, Gupta RC. Properties of concrete containing polished granite waste as partial substitution of coarse aggregate. Constr Build Mater. 2017;151:158–63.

    Article  Google Scholar 

  7. Lokeshwari M, Jagadish KS. Eco-friendly use of granite fines waste in building blocks. Procedia Environ Sci. 2016;35:618–23.

    Article  CAS  Google Scholar 

  8. Singh S, Khan S, Khandelwal R, Chugh A, Nagar R. Performance of sustainable concrete containing granite cutting waste. J Clean Prod. 2016;119:86–98.

    Article  CAS  Google Scholar 

  9. Monteiro SN, Pecanha LA, Vieira CMF. Reformulation of roofing tiles body with addition of granite waste from sawing operations. J Eur Ceram Soc. 2004;24:2349–56.

    Article  CAS  Google Scholar 

  10. Vijayalakshmi M, Sekar ASS, Ganesh Prabhu G. Strength and durability properties of concrete made with granite industry waste. Constr Build Mater. 2013;46:1–7.

    Article  Google Scholar 

  11. Li Y, Yu H, Zheng L, Wen J, Wu C, Tan Y. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Constr Build Mater. 2013;38:1–7.

    Article  CAS  Google Scholar 

  12. Singh S, Nagar R, Agrawal V, Rana A, Tiwari A. Sustainable utilization of granite cutting waste in high strength concrete. J Clean Prod. 2016;116:223–35.

    Article  Google Scholar 

  13. Scrivener K, Capmas A. Calcium aluminate cements. In: Newman J, Choo BS, editors. Advanced concrete technology constituent materials. Oxford: Butterworth-Heinemann; 2003. p. 2/1–2/30.

    Google Scholar 

  14. Ukrainczyk N, Matusinovic T. Thermal properties of hydrating calcium aluminate cement pastes. Cem Concr Res. 2010;40:128–36.

    Article  CAS  Google Scholar 

  15. Khaliq W, Khan HA. High temperature material properties of calcium aluminate cement concrete. Constr Build Mater. 2015;94:475–87.

    Article  Google Scholar 

  16. Antonovic V, Keriene J, Boris R, Aleknevicius M. The effect of temperature on the formation of the hydrated calcium aluminate cement structure. Procedia Eng. 2013;57:99–106.

    Article  CAS  Google Scholar 

  17. Scrivener KL, Cabiron JL, Letourneux R. High performance concretes from calcium aluminate cements. Cem Concr Res. 1999;29:1215–23.

    Article  CAS  Google Scholar 

  18. Kirca O. Temperature effect on calcium aluminate cement based composite binders. Ankara: Middle East Technical University; 2006.

    Google Scholar 

  19. Rodger SA, Double DD. The chemistry of hydration of high alumina cement in the presence of accelerating and retarding admixtures. Cem Concr Res. 1984;14:73–82.

    Article  CAS  Google Scholar 

  20. Pacewska B, Nowacka M, Antonovic V, Aleknavicius M. Investigation of early hydration of high aluminate cement based binder at different ambient temperatures. J Therm Anal Calorim. 2012;109:717–26.

    Article  CAS  Google Scholar 

  21. Pacewska B, Nowacka M, Aleknavicius M, Antonovic V. Early hydration of calcium aluminate cement blended with FCC catalyst at two temperatures. Procedia Eng. 2013;57:844–50.

    Article  CAS  Google Scholar 

  22. Quillin K, Osborne G, Majumdar A, Singh B. Effects of w/c ratio and curing conditions on strength development in BRECEM concretes. Cem Concr Res. 2001;31:627–32.

    Article  CAS  Google Scholar 

  23. Xu L, Wang P, Zhang G. Calorimetric study on the influence of calcium sulfate on the hydration of Portland cement–calcium aluminate cement mixtures. J Therm Anal Calorim. 2012;110:725–31.

    Article  CAS  Google Scholar 

  24. Pacewska B, Wilińska I, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009;97:61–6.

    Article  CAS  Google Scholar 

  25. Pacewska B, Wilińska I, Nowacka M. Studies on the influence of different fly ashes and Portland cement on early hydration of calcium aluminate cement. J Therm Anal Calorim. 2011;106:859–68.

    Article  CAS  Google Scholar 

  26. Boris R, Antonovič V, Keriene J, Stonys R. The effect of carbon fiber additive on early hydration of calcium aluminate cement. J Therm Anal Calorim. 2016;125:1061–70.

    Article  CAS  Google Scholar 

  27. Montes M, Pato E, Carmona-Quiroga PM, Blanco-Varela MT. Can calcium aluminates activate ternesite hydration? Cem Concr Res. 2018;103:204–15.

    Article  CAS  Google Scholar 

  28. Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem Concr Res. 2011;41:1232–43.

    Article  CAS  Google Scholar 

  29. Parr C, Simonin F, Touzo B, Wohrmeyer C, Valdelievre B, Namba A. The impact of calcium aluminate cement hydrate samples. J Tech Assoc Refract. 2005;25:78–88.

    Google Scholar 

  30. Dambrauskas T, Baltakys K, Skamat J, Kudzma A. Hydration peculiarities of high basicity calcium silicate hydrate samples. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s1097301763206.

    Article  Google Scholar 

  31. Gawlicki M, Nocun-Wczelik W, Bak L. Calorimetry in the studies of cement hydration. J Therm Anal Calorim. 2012;109:537–44.

    Article  CAS  Google Scholar 

  32. Antonovic V, Aleknevicius M, Keriene J, Pundienė I, Stonys R. Investigating the hydration of deflocculated calcium aluminate cement-based binder with catalyst waste. J Therm Anal Calorim. 2012;109:537–44.

    Article  CAS  Google Scholar 

  33. Smigelskyte A, Siauciunas R. Influence of raw meal compaction pressure on OPC clinker mineral composition and heat flow. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s109730176479x.

    Article  Google Scholar 

  34. Pacewska B, Nowacka M. Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method. J Therm Anal Calorim. 2014;117:653–60.

    Article  CAS  Google Scholar 

  35. Rivas-Mercury JM, Pena P, de Aza AH, Turrillas X. Dehydration of Ca3Al2(SiO4)y(OH)4(3 − y) (0 < y < 0.176) studied by neutron thermodiffractometry. J Eur Ceram Soc. 2008;28:1737–48.

    Article  CAS  Google Scholar 

  36. Eisinas A, Doneliene J, Baltakys K, Urbutis A. Hydrothermal synthesis of calcium aluminium hydrate-based adsorbent for the removal of CO2. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6368-3.

    Article  Google Scholar 

  37. Cardoso FA, Innocentini MDM, Akiyoshi MM, Pandolfelli VC. Effect of curing time on the properties of CAC bonded refractory castables. J Eur Ceram Soc. 2004;24:2073–8.

    Article  CAS  Google Scholar 

  38. Ukrainczyk N, Matusinovic T, Kurajica S, Zimmermann B, Sipusic J. Dehydration of a layered double hydroxide—C2AH8. Thermochim Acta. 2007;464:7–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. S-MIP-17-92) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Baltakys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltakys, K., Sarapajevaite, G. & Dambrauskas, T. The influence of different additives on the early-stage hydration of calcium aluminate cement. J Therm Anal Calorim 134, 89–99 (2018). https://doi.org/10.1007/s10973-018-7153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7153-7

Keywords

Navigation