Skip to main content
Log in

Effects of limestone powder on the early hydration of tricalcium aluminate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To further explore the effects of limestone powder (LP) on the hydration of Portland cement as well as the formation and transformation mechanism of calcium carboaluminate phases, the hydration reaction between LP and tricalcium aluminate (C3A) is thoroughly studied in this paper. Due to the crucial influence of gypsum on the hydration of C3A, two systems are well studied, viz. the C3A–LP–H2O and the C3A–LP–CaSO4·2H2O–H2O system. The replacement levels of LP are 0, 5 mass%, 15 mass% and 25 mass% by mass of total binder. The hydration behavior of these two systems are studied using isothermal calorimetry, XRD and quantitative XRD, and chemical shrinkage. The obtained results show that more LP delays the formation of hemicarboaluminate. In the C3A–LP–CaSO4·2H2O–H2O system, the formation of calcium carboaluminate phases only begins after gypsum is consumed. Moreover, LP can reduce the chemical shrinkage resulting from the volume increase of the formation of calcium carboaluminate phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Olivier JGJ, Janssensmaenhout G, Muntean M, et al. Trends in global CO2 emissions: 2015 report. The Hague: PBL Netherlands Environmental Assessment Agency; 2015.

    Google Scholar 

  2. Sakai E, Miyahara S, Ohsawa S. Hydration of fly ash cement. Cem Concr Res. 2005;35(6):1135–40.

    Article  CAS  Google Scholar 

  3. Bijen J. Benefits of slag and fly ash. Constr Build Mater. 1996;10(5):309–14.

    Article  Google Scholar 

  4. Ingram KD, Daugherty KE. A review of limestone additions to Portland cement and concrete. Cem Concr Compos. 1991;13(3):165–70.

    Article  CAS  Google Scholar 

  5. Bonavetti V, Donza H, Menéndez G, et al. Limestone filler cement in low w/c concrete: a rational use of energy. Cem Concr Res. 2003;33(6):865–71.

    Article  CAS  Google Scholar 

  6. WBCSD Cement Sustainability Initiative. Getting the Numbers Right Project Emissions Report 2017; 2018.

  7. EN 197-1. Cement Composition. European Committee for Standardization, UK. 2000.

  8. ASTM C595, C595M-12. Standard specification for blended hydraulic cements. West Conshohocken: ASTM international; 2012.

    Google Scholar 

  9. CSA A3000-13. Cementitious materials compendium. Toronto: Canadian Standards Association; 2013.

    Google Scholar 

  10. GB 175-2007. Common Portland cement. Beijing: China Building Materials Industry Association; 2007.

    Google Scholar 

  11. Sato T, Diallo F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. J Transp Res Board. 2018;2141:61–7.

    Article  Google Scholar 

  12. Cao M, Ming X, He K, et al. Effect of macro-, micro- and nano-calcium carbonate on properties of cementitious composites—a review. Materials (Basel). 2019;12(5):2–20.

    Article  Google Scholar 

  13. Ghiasvand E, Ramezanianpour AA, Ramezanianpour AM. Influence of grinding method and particle size distribution on the properties of Portland-limestone cements. Mater Struct. 2013;48(5):1273–83.

    Article  Google Scholar 

  14. Soroka I, Setter N. The effect of fillers on strength of cement mortars. Cem Concr Res. 1977;7(4):449–56.

    Article  CAS  Google Scholar 

  15. Chen J, Cui H, Chen H, et al. Study on performance of concrete mixed with ultra-fine limestone powder. Constr Tech. 2004;33(4):39–41.

    CAS  Google Scholar 

  16. Bederina M, Makhloufi Z, Bouziani T. Effect of limestone fillers the physic-mechanical properties of limestone concrete. Phys Procedia. 2011;21:28–34.

    Article  CAS  Google Scholar 

  17. Soroka I, Stern N. Calcareous fillers and the compressive strength of Portland cement. Cem Concr Res. 1976;6(3):367–76.

    Article  CAS  Google Scholar 

  18. Rode S, Oyabu N, Kobayashi K, Yamada H, Kühnle A. True atomic-resolution imaging of (101̅4) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir. 2009;25(5):2850–3.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor HF. Cement chemistry. London: Thomas Telford; 1997.

    Book  Google Scholar 

  20. Ingram K, Poslusny M, Daugherty K, et al. Carboaluminate reactions as influenced by limestone additions. In: Carbonate additions to cement. West Conshohocken: ASTM International; 1990. p. 14–23.

    Chapter  Google Scholar 

  21. Klemm WAL. An investigation of the formation of carboaluminates. West Conshohocken: ASTM International; 1990. p. 60–72.

    Google Scholar 

  22. Kakali G, Tsivilis S, Aggeli E, et al. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem Concr Res. 2000;30(7):1073–7.

    Article  CAS  Google Scholar 

  23. Yang H, Fang K, Tang S, et al. The effect and its mechanism of calcium carbonate on the cement based materials. Concr. 2006;6:32–5.

    Google Scholar 

  24. Wang D, Shi C, Farzadnia N, et al. A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures. Constr Build Mater. 2018;181:659–72.

    Article  CAS  Google Scholar 

  25. Bonavetti VL, Rahhal VF, Irassar EF. Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res. 2001;31(6):853–9.

    Article  CAS  Google Scholar 

  26. De Weerdt K, Haha MB, Le Saout G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41(3):279–91.

    Article  Google Scholar 

  27. Zajac M, Rossberg A, Saout GL, et al. Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos. 2014;46:99–108.

    Article  CAS  Google Scholar 

  28. Antoni M, Rossen J, Martirena F, et al. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42(12):1579–89.

    Article  CAS  Google Scholar 

  29. Zhang Y, Xiong Z. Research on effect of limestone and gypsum on C3A, C3S and PC clinker system. Constr Build Mater. 2008;22(8):1634–42.

    Article  Google Scholar 

  30. Quennoz A, Scrivener KL. Interactions between alite and C3A-gypsum hydrations in model cements. Cem Concr Res. 2013;44:46–54.

    Article  CAS  Google Scholar 

  31. Mondal P, Jeffery JW. The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr B. 1975;31(3):689–97.

    Article  Google Scholar 

  32. Pedersen BF, Semmingsen D. Neutron diffraction refinement of the structure of gypsum, CaSO4·2H2O. Acta Crystallogr B. 1982;38(Part 4):1074–7.

    Article  Google Scholar 

  33. Maslen EN, Streltsov VA, Streltsova NR, et al. Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr B. 1995;51:929–39.

    Article  Google Scholar 

  34. Foreman DW. Neutron and X-ray diffraction study of Ca3Al2(O4D4)3, a garnetoid. J Chem Phys. 1968;48(7):3037–41.

    Article  CAS  Google Scholar 

  35. Goetz-Neunhoeffer F, Neubauer J. Refined ettringite (Ca6Al2(SO4)3(OH)12·26(H2O)) structure for quantitative X-ray diffraction analysis. Powder Diffr. 2006;21:4–11.

    Article  CAS  Google Scholar 

  36. Hajilar S, Shafei B. Structure, orientation, and dynamics of water-soluble ions adsorbed to basal surfaces of calcium monosulfoaluminate hydrates. Phys Chem Chem Phys. 2018;20(38):4681–24694.

    Article  Google Scholar 

  37. Runcevski T, Dinnebier RE, Magdysyuk OV, et al. Crystal structures of calcium hemicarboaluminate and carbonated calcium hemicarboaluminate from synchrotron powder diffraction data. Acta Crystallogr B. 2012;68(5):493–500.

    Article  CAS  PubMed  Google Scholar 

  38. Fischer R, Kuzel HJ. Reinvestigation of the system C4A.nH2O-C4A.CO2.nH2O. Cem Concr Res. 1982;12(4):517–26.

    Article  CAS  Google Scholar 

  39. Joseph S, Skibsted J, Cizer Ö. A quantitative study of the C3A hydration. Cem Concr Res. 2018;115:145–59.

    Article  Google Scholar 

  40. Vance K, Aguayo M, Oey T, et al. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cem Concr Comps. 2013;39:93–103.

    Article  CAS  Google Scholar 

  41. Ma J, Yu Z, Shi H, et al. Long-term hydration behavior and pore structure development of cement–limestone binary system. J Therm Anal Calorim. 2021;143(1):843–52.

    Article  CAS  Google Scholar 

  42. Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: effect of limestone particle size. Constr Build Mater. 2014;66(36):410–7.

    Article  Google Scholar 

  43. Celik K, Rotana H, Hargis CW, et al. Effect of volcanic ash pozzolan or limestone replacement on hydration of Portland cement. Constr Build Mater. 2019;197:803–12.

    Article  CAS  Google Scholar 

  44. Minard H, Garrault S, Regnaud L, et al. Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem Concr Res. 2007;37(10):1418–26.

    Article  CAS  Google Scholar 

  45. Bullard JW, Jennings HM, Livingston RA, et al. Mechanisms of cement hydration. Cem Concr Res. 2011;41(12):1208–23.

    Article  CAS  Google Scholar 

  46. Baquerizo LG, Matschei T, Scrivener KL, et al. Hydration states of AFm cement phases. Cem Concr Res. 2015;73:143–57.

    Article  CAS  Google Scholar 

  47. Lothenbach B, Pelletier-Chaignat L, Winnefeld F. Stability in the system CaO–Al2O3–H2O. Cem Concr Res. 2012;42(12):1621–34.

    Article  CAS  Google Scholar 

  48. Matschei T, Lothenbach B, Glasser FP. The AFm phase in Portland cement. Cem Concr Res. 2007;37(2):118–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I hereby express gratitude for the financial support of the National Key R & D Program of China (Grant No. 2017YFB0310002), the National Natural Science Foundation of China (Grant No. 51708290), the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD), Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuqing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Liu, X., Yu, Z. et al. Effects of limestone powder on the early hydration of tricalcium aluminate. J Therm Anal Calorim 147, 10351–10362 (2022). https://doi.org/10.1007/s10973-022-11287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11287-7

Keywords

Navigation