Skip to main content
Log in

Resolution of problems in soft matter dynamics by combining calorimetry and other spectroscopies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In several current important problems in different areas of soft matter physics, controversy persists in interpreting the molecular dynamics observed by various spectroscopies including dielectric relaxation, light scattering, nuclear magnetic resonance, and neutron scattering. Outstanding examples include: (1) relaxation of water in aqueous mixtures, in molecular sieves and silica-gel nanopores, and in hydration shell of proteins; and (2) dynamics of each component in binary miscible polymer blends, in mixtures of an amorphous polymer with a small molecular glassformer, and in binary mixtures of two small molecular glassformers. We show the applications of calorimetry to these problems have enhanced our understanding of the dynamics and eliminated the controversies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We are not interested in the peaks of enthalpy release and absorption rates observed at 210 K of water confined in 1.8 nm diameter pores of MCM-41, and is attributed to glass transition of bulk water by Oguni et al. [18].

References

  1. Capaccioli S, Ngai KL, Shinyashiki N. The Johari-Goldstein β-relaxation of water. J Phys Chem B. 2007;111:8197–209.

    Article  CAS  Google Scholar 

  2. Mierzwa M, Pawlus S, Paluch M, Kaminska E, Ngai KL. Correlation between primary and secondary Johari–Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions. J Chem Phys. 2008;128:044512.

    Article  CAS  Google Scholar 

  3. Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Sharifi S, Rolla PA. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems. J Phys Chem B. 2008;112:4470–3.

    Article  CAS  Google Scholar 

  4. Capaccioli S, Prevosto D, Lucchesi M, Rolla PA, Casalini R, Ngai KL. Identifying the genuine Johari-Goldstein β-relaxation by cooling, compressing, and aging small molecular glass-formers. J Non-Cryst Solids. 2005;351:2643–51.

    Article  CAS  Google Scholar 

  5. Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Rolla PA. Correlation of structural, Johari-Goldstein relaxations in systems vitrifying along isobaric, isothermal paths. J Phys Condens Matter. 2007;19:205133.

    Article  Google Scholar 

  6. Ngai KL. An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. J Phys Condens Matter. 2003;15:S1107–25.

    Article  CAS  Google Scholar 

  7. Ngai KL, Paluch M. Classification of secondary relaxation in glass-formers based on dynamic properties. J Chem Phys. 2004;120:857.

    Article  CAS  Google Scholar 

  8. Jansson H, Swenson J. Dynamics of water in molecular sieves by dielectric spectroscopy. Eur Phys J E. 2003;12:S51–4.

    Article  Google Scholar 

  9. Bergman R, Swenson J. Dynamics of supercooled water in confined geometry. Nature. 2000;403:283–6.

    Article  CAS  Google Scholar 

  10. Swenson J, Jansson H, Howells WS, Longeville S. Dynamics of water in a molecular sieve by quasielastic neutron scattering. J Chem Phys. 2005;122:084505.

    Article  CAS  Google Scholar 

  11. Hedström J, Swenson J, Bergman R, Jansson H, Kittaka S. Does confined water exhibit a fragile-to-strong transition? Eur Phys J. Special Topics. 2007;141:53–6.

    Google Scholar 

  12. Faraone A, Liu L, Mou C-Y, Yen C-W, Chen S-H. Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys. 2004;121:10843–6.

    Article  CAS  Google Scholar 

  13. Liu L, Chen S-H, Faraone A, Yen C-W, Mou C-Y. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett. 2005;95:117802.

    Article  Google Scholar 

  14. Mallamace F, Broccio M, Corsaro C, Farone A, Wanderlingh U, Liu L, et al. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results. J Chem Phys. 2006;124:161102.

    Article  CAS  Google Scholar 

  15. Swenson J. Comment on “Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett. 2006;97:189801.

    Article  Google Scholar 

  16. Oguni M, Maruyama S, Wakabayashi K, Nagoe A. Glass transitions of ordinary and heavy water within silica-gel nanopores. Chem Asian J. 2007;2:514–20.

    Article  CAS  Google Scholar 

  17. Debenedetti PG. Supercooled and glassy water. J Phys Condens Matter. 2003;15:R1669–726.

    Article  CAS  Google Scholar 

  18. Oguni M, Kanke Y, Namba S. Thermal properties of the water confined within nanopores of silica MCM-41. AIP Conf Proc. 2008;982:34.

    Article  CAS  Google Scholar 

  19. Cammarata M, Levantino M, Cupane A, Longo A, Martorana A, Bruni F. Structure and dynamics of water confined in silica hydrogels: X-ray scattering and dielectric spectroscopy studies. Eur Phys J E. 2003;12:S63–6.

    Article  Google Scholar 

  20. Pathmanathan K, Johari GP. Dielectric and conductivity relaxations in Poly(hema) and of water in its hydrogel. J Polym Sci B. 1990;28:675–89.

    Article  CAS  Google Scholar 

  21. Pathmanathan K, Johari GP. Relaxation and crystallization of water in a hydrogel. J Chem Soc Faraday Trans. 1994;90:1143.

    Article  CAS  Google Scholar 

  22. Hofer K, Mayer E, Johari GP. Glass liquid transition of water and ethylene-glycol solution in poly(2-hydroxyethyl methacrylate) hydrogel. J Phys Chem. 1990;94:2689–96.

    Article  CAS  Google Scholar 

  23. Hofer K, Mayer E, Johari GP. Glass liquid transition and calorimetric relaxation of glassy aqueous-solutions imbibed in poly(2-hydroxyethyl methacrylate)—a comparison with bulk behavior. J Phys Chem. 1991;95:7100.

    Article  CAS  Google Scholar 

  24. Johari GP, Hallbrucker A, Mayer E. The glass liquid transition of hyperquenched water. Nature. 1987;330:552–3.

    Article  CAS  Google Scholar 

  25. Johari GP, Hallbrucker A, Mayer E. Isotope effect on the glass-transition and crystallization of hyperquenched glassy water. J Chem Phys. 1990;92:6742–6.

    Article  CAS  Google Scholar 

  26. Johari GP, Astl G, Mayer E. Enthalpy relaxation of glassy water. J Chem Phys. 1990;92:809–10.

    Article  CAS  Google Scholar 

  27. Swenson J, Jansson H, Hedström J, Bergman R. Properties of hydration water, its role in protein dynamics. J Phys Condens Matter. 2007;19:205109.

    Article  Google Scholar 

  28. Shinyashiki N, Yamamoto W, Yokoyama A, Yoshinari T, Yagihara S, Kita R, Ngai KL, Capaccioli S. Glass transitions in aqueous solution of protein (bovine serum albumin). J Phys Chem B. 2009;113:14448.

    Article  CAS  Google Scholar 

  29. Kawai K, Suzuki T, Oguni M. Low-temperature glass transitions of quenched and annealed bovine serum albumin aqueous solutions. Biophys J. 2006;90:3732–8.

    Article  CAS  Google Scholar 

  30. Doster W, Settles M. Protein-water displacement distributions. Biochim Biophys Acta. 2005;1749:173–86.

    CAS  Google Scholar 

  31. Doster W. The dynamical transition of proteins, concepts and misconceptions. Eur Biophys J. 2008;37:591–602.

    Article  CAS  Google Scholar 

  32. Parak F, Knapp EW, Kucheida D. Protein dynamics Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982;161:177–94.

    Article  CAS  Google Scholar 

  33. Doster W, Cusak S, Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989;337:754–6.

    Article  CAS  Google Scholar 

  34. Chen S-H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E. Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc Natl Acad Sci USA. 2006;103:9012–6.

    Article  CAS  Google Scholar 

  35. Khodadadi S, Pawlus S, Roh JH, Garcia Sakai V, Mamontov E, Sokolov AP. The origin of the dynamic transition in proteins. J Chem Phys. 2008;128:195106.

    Article  CAS  Google Scholar 

  36. Khodadadi S, Pawlus S, Sokolov AP. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J Phys Chem B. 2008;112:14273–80.

    Article  CAS  Google Scholar 

  37. Tarek M, Tobias DJ. Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 2002;88:138101.

    Google Scholar 

  38. Ringe D, Petsko GA. The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys Chem. 2003;105:667–80.

    Article  CAS  Google Scholar 

  39. Miyazaki Y, Matsuo T, Suga H. Low-temperature heat capacity and glassy behavior of lysozyme crystal. J Phys Chem B. 2000;104:8044–52.

    Article  CAS  Google Scholar 

  40. Teeter MM, Yamano A, Stec B, Mohanty U. On the nature of a glassy state of matter in a hydrated protein: relation to protein function. Proc Natl Acad Sci USA. 2001;98:11242–7.

    Article  CAS  Google Scholar 

  41. Zanotti J-M, Gibrat G, Bellissent-Funel M-C. Hydration water rotational motion as a source of configurational entropy driving protein dynamics. Crossovers at 150 and 220 K. Phys Chem Chem Phys. 2008;10:4865.

    Article  CAS  Google Scholar 

  42. Fenimore PW, Frauenfelder H, McMahon BH, Young RD. Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA. 2004;101:14408–13.

    Article  CAS  Google Scholar 

  43. Ngai KL. Dynamic and thermodynamic properties of glass-forming substances. J Non-Cryst Solids. 2000;275:7–51.

    Article  CAS  Google Scholar 

  44. Casalini R, Ngai KL. Structural dependence of fast relaxation in glass-forming substances and correlation with the stretch exponent of the slow structural α-relaxation. J Non-Cryst Solids. 2001;293–295:318–26.

    Article  Google Scholar 

  45. Angell CA. Ten questions on glassformers, and a real space ‘excitations’ model with some answers on fragility and phase transitions. J Phys Condens Matter. 2000;12:6463–75.

    Article  CAS  Google Scholar 

  46. Sokolov AP, Kisliuk A, Novikov VN, Ngai KL. Observation of constant loss in fast relaxation spectra of polymers. Phys Rev B. 2001;63:172204.

    Article  Google Scholar 

  47. Kisliuk A, Novikov VN, Sokolov AP. Constant loss in Brillouin spectra of polymers. J Polym Sci B. 2002;40:201–9.

    Article  CAS  Google Scholar 

  48. Ngai KL. Why the fast relaxation in the picosecond to nanosecond time range can sense the glass transition. Philos Mag. 2004;84:1341–53.

    Article  CAS  Google Scholar 

  49. Capaccioli S, Shahin Thayyil M, Ngai KL. Critical issues of current research on the dynamics leading to glass transition. J Phys Chem B. 2008;112:16035–49.

    Article  CAS  Google Scholar 

  50. Ngai KL, Habasaki J, Leon C, Rivera A. Comparison of dynamics of ions in ionically conducting materials and dynamics of glass-forming substances: remarkable similarities. Z Phys Chem. 2005;219:47.

    CAS  Google Scholar 

  51. Nowaczyk A, Geil B, Hinze G, Böhmer R. Correlation of primary relaxations and high-frequency modes in supercooled liquids. II. Evidence from spin-lattice relaxation weighted stimulated-echo spectroscopy. Phys Rev E. 2006;74:041505.

    Article  CAS  Google Scholar 

  52. Lusceac S, Vogel MR, Herbers CR. 2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen. arXiv:0904.4424v1 [cond-mat.soft]. Accessed 28 April 2009.

  53. Döß A, Paluch M, Sillescu H, Hinze G. From strong to fragile glass formers: secondary relaxation in polyalcohols. Phys Rev Lett. 2002;88:095701.

    Article  Google Scholar 

  54. Morozov VN, Gevorkian SG. Low-temperature glass transition in proteins. Biopolymers. 1985;24:785.

    Article  Google Scholar 

  55. Ngai KL, Capaccioli S, Shinyashiki The N. Protein “glass” transition, the role of the solvent. J Phys Chem B. 2008;112:3826.

    Article  CAS  Google Scholar 

  56. Ngai KL, Capaccioli S, Shinyashiki N, Shahin Thayyil M. Recent progress in understanding relaxation in complex systems. J Non-Cryst Solids. in press.

  57. Gainaru C, Fillmer A, Böhmer R. Surface activation by deeply supercooled hydration water in connective tissue proteins. J Phys Chem B 2009; Submitted.

  58. Lorthioir C, Alegrıa A, Colmenero J. Out of equilibrium dynamics of poly(vinyl methyl ether) segments in miscible poly(styrene)-poly(vinyl methyl ether) blends. Phys Rev E. 2003;68:031805.

    Article  Google Scholar 

  59. Cangiolosi D, Alegria A, Colmenero J. Dielectric relaxation of polychlorinated biphenyl/toluene mixtures: component dynamics. J Chem Phys. 2008;128:224508.

    Article  Google Scholar 

  60. Urakawa O, Fuse Y, Hori H, Tran-Cong Q, Yano O. A dielectric study on the local dynamics of miscible polymer blends: poly(2-chlorostyrene)/poly(vinyl methyl ether). Polymer. 2001;42:765–73.

    Article  CAS  Google Scholar 

  61. Miwa Y, Usami K, Yamamoto K, Sakaguchi M, Sakai M, Shimada S. Direct detection of effective glass transitions in miscible polymer blends by temperature-modulated differential scanning calorimetry. Macromolecules. 2005;38:2355–61.

    Article  CAS  Google Scholar 

  62. Kahle S, Korus J, Hempel E, Unger R, Höring S, Schröter G, et al. Glass-transition cooperativity onset in a series of random copolymers poly(n-butyl methacrylate-stat-styrene). Macromolecules. 1997;30:7214–23.

    Article  CAS  Google Scholar 

  63. Ngai KL. Correlation between β-relaxation and α-relaxation in the family of poly(n-butyl methacrylate-stat-styrene) random copolymers. Macromolecules. 1999;32:7140–6.

    Article  CAS  Google Scholar 

  64. Miller JB, McGrath KJ, Roland CM, Trask CA, Garroway AN. Nuclear magnetic resonance study of polyisoprene/poly(vinylethylene) miscible blends. Macromolecules. 1990;23:4543–7.

    Article  CAS  Google Scholar 

  65. Alegria A, Colmenero J, Ngai KL, Roland CM. Observation of the component dynamics in a miscible polymer blend by dielectric, mechanical spectroscopies. Macromolecules. 1994;27:4486.

    Article  CAS  Google Scholar 

  66. Ngai KL, Roland CM. Component dynamics in polyisoprene/poly(vinylethylene) blends. Macromolecules. 1995;28:4033–5.

    Article  CAS  Google Scholar 

  67. Chung G-C, Kornfield JA, Smith SD. Compositional dependence of segmental dynamics in a miscible polymer blend. Macromolecules. 1994;27:5729–41.

    Article  CAS  Google Scholar 

  68. Sakaguchi T, Taniguchi N, Urakawa O, Adachi K. Calorimetric study of dynamical heterogeneity in blends of polyisoprene and poly(vinylethylene). Macromolecules. 2005;38:422–8.

    Article  CAS  Google Scholar 

  69. Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility: the case of PEO/PMMA. J Polym Sci B. 2006;44:756–63.

    Article  CAS  Google Scholar 

  70. Ngai KL, Roland CM. Models for the component dynamics in blends and mixtures. Rubber Chem Technol. 2004;77:579–90.

    CAS  Google Scholar 

  71. Roland CM, McGrath KJ, Casalini R. Dynamic heterogeneity in poly(vinyl methyl ether)/poly(2-chlorostyrene) blends. Macromolecules. 2006;39:3581–7.

    Article  CAS  Google Scholar 

  72. Lutz TR, He Y, Ediger MD, Cao H, Lin G, Jones AA. Rapid poly(ethylene oxide) segmental dynamics in blends with poly(methyl methacrylate). Macromolecules. 2003;36:1724–30.

    Article  CAS  Google Scholar 

  73. Ngai KL, Roland CM. Unusual component dynamics in poly(ethylene oxide)/poly(methyl methacrylate) blends as probed by deuterium NMR. Macromolecules. 2004;37:2817–22.

    Article  CAS  Google Scholar 

  74. Ngai KL. Predicting the changes of relaxation dynamics with various modifications of the chemical and physical structures of glass-formers. J Non-Cryst Solids. 2007;353:4237–45.

    Article  CAS  Google Scholar 

  75. Jin X, Zhang S, Runt J. Broadband dielectric investigation of amorphous poly(methyl methacrylate)/poly(ethylene oxide) Blends. Macromolecules. 2004;37:8110–5.

    Article  CAS  Google Scholar 

  76. Doss A, Hinze G, Schiener B, Hemberger J, Böhmer R. Dielectric relaxation in the fragile viscous liquid state of toluene. J Chem Phys. 1997;107:1740.

    Article  CAS  Google Scholar 

  77. Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rossler E. The dielectric response of simple organic glass formers. J Mol Liq. 1999;479:201.

    CAS  Google Scholar 

  78. Hensel-Bielowka S, Paluch M, Ngai KL. Emergence of the genuine Johari–Goldstein secondary relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature and pressure. J Chem Phys. 2005;123:014502.

    Article  CAS  Google Scholar 

  79. Adachi K, Fujihara I, Ishida Y. Diluent effects on molecular motions and glass transition in polymers. I. Polystyrene-toluene. J Polym Sci Polym Phys Ed. 1975;13:2155–71.

    Article  CAS  Google Scholar 

  80. Rössler E, Sillescu H, Spiess HW. Deuteron NMR in relation to the glass transition in polymers. Polymer. 1985;26:203–7.

    Article  Google Scholar 

  81. Floudas G, Steffen W, Fischer EW, Brown W. Solvents and polymer dynamics in concentrated polystyrene/toluene solutions. J Chem Phys. 1993;99:695.

    Article  CAS  Google Scholar 

  82. Rizos AK, Johnsen RM, Brown W, Ngai KL. Component dynamics in polystyrene/bis(2-ethylhexyl) phthalate solutions by polarized and depolarized light scattering and dielectric spectroscopy. Macromolecules. 1996;28:5450–7.

    Article  Google Scholar 

  83. Taniguchi N, Urakawa O, Adachi K. Calorimetric study of dynamical heterogeneity in toluene solutions of polystyrene. Macromolecules. 2004;37:7832–8.

    Article  CAS  Google Scholar 

  84. Braun G, Kovacs AJ. Variations de la temperature de transition vitreuse du polystyrolene en fonction de la concentration en plastifiant. Compte Rendus. 1965;260:2217–20.

    CAS  Google Scholar 

  85. Plazek DJ, Riande E, Markovitz H, Raghupathi N. Concentration dependence of the viscoelastic properties of polystyrene-tricresyl phosphate solutions. J Polym Sci Polym Phys Ed. 1979;17:2189.

    Article  CAS  Google Scholar 

  86. Savin DA, Larson AM, Lodge TP. Effect of composition on the width of the calorimetric glass transition in polymer-solvent and solvent-solvent mixtures. J Polym Sci B. 2004;42:1155–63.

    Article  CAS  Google Scholar 

  87. Svanberg C, Bergman R, Jacobsson P. Secondary relaxation in confined and bulk propylene carbonate. Europhys Lett. 2003;64:358–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported at NRL by the Office of Naval Research, at the Università di Pisa by MIUR-FIRB 2003 D.D.2186 grant RBNE03R78E, and at Tokai University by Grant-in-Aid for Scientific Research (C)(19540429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Capaccioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngai, K.L., Capaccioli, S., Shahin Thayyil, M. et al. Resolution of problems in soft matter dynamics by combining calorimetry and other spectroscopies. J Therm Anal Calorim 99, 123–138 (2010). https://doi.org/10.1007/s10973-009-0500-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0500-y

Keywords

Navigation