Skip to main content
Log in

A model for the anomalous electronic properties in liquid silver chalcogenides

Implications from a viscoelastic theory

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The electronic conductivity in liquids Ag–S and Ag–Se systems exhibits a maximum and a negative temperature derivative at the stoichiometric composition Ag2S and Ag2Se. In a similar alloy, Cu chalcogenides and other liquid semiconductors, such anomalies have not been observed. In the present paper, a model that explains the origin of the anomaly is presented. It is suggested that the anomalous behavior is controlled by the connection between the second nearest neighbor orbitals. Such connection depends on the electronegativity difference between the constituent elements of the system and is intimately related with the superionic behavior that these materials exhibit in the solid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohno S, Barnes AC, Enderby JE. The electrical conductivity and thermopower of liquid Ag1−x S x alloys near the stoichiometric composition Ag2S. J Phys Condens Matter. 1990;2:7707–14.

    Article  CAS  Google Scholar 

  2. Ohno S, Barnes AC, Enderby JE. The electronic properties of liquid Ag1−x Se x . J Phys Condens Matter. 1994;6:5335–50.

    Article  CAS  Google Scholar 

  3. Enderby JE, Barnes AC. Liquid semiconductors. Rep Prog Phys. 1990;53:85–179.

    Article  CAS  Google Scholar 

  4. Price DL, Saboungi ML, Susman S, Volin KJ, Enderby JE, Barnes AC. Structure of two liquid semiconductors Ag1−x Se x and Ag0.67Te0.33. J Phys Condens Matter. 1993;5:3087–94.

    Article  CAS  Google Scholar 

  5. Usuki T, Itoh K, Uemura O, Kameda Y. Semiconducting behavior in the liquid Ag-Ag2X3 system (X:Te, Se). Ber Bunsenges Phys Chem. 1998;102:656–62.

    CAS  Google Scholar 

  6. Hamilton MA, Barnes AC, Howells WS, Fischer HE. Ag+ dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering. J Phys Condens Matter. 2001;13:2425–36.

    Article  CAS  Google Scholar 

  7. Kirchhoff F, Holender JM, Gillan MJ. Structure, dynamics, and electronic structure of liquid Ag–Se alloys investigated by ab initio simulation. Phys Rev B. 1996;54:190–202.

    Article  CAS  Google Scholar 

  8. Koslowski T. The electronic structure of liquid silver chalcogenides: a tight-binding approach. J Phys Condens Matter. 1996;8:7031–9.

    Article  CAS  Google Scholar 

  9. Chandra S. Superionic solids. Amsterdam, North-Holland; 1981.

  10. Aniya M. A chemical approach for the microscopic mechanism of fast ion transport in solids. Solid State Ionics. 1992;50:125–9.

    Article  CAS  Google Scholar 

  11. Aniya M. Pseudopotential study of bonding in the superionic material AgI. J Phys Soc Jpn. 1992;61:4474–83.

    Article  CAS  Google Scholar 

  12. Aniya M, Wakamura K. Temperature dependence of the dynamical effective charge in Ag3SI. Solid State Ionics. 1996;86–88:183–6.

    Article  Google Scholar 

  13. Aniya M. A model for the photo-electro ionic phenomena in chalcogenide glasses. J Non-Cryst Solids. 1996;198–200:762–5.

    Article  Google Scholar 

  14. Aniya M. The bond fluctuation model of superionic conductors: a review. Rec Res Develop Phys Chem Solids. 2002;1:99–120.

    CAS  Google Scholar 

  15. Shimojo F, Aniya M. Diffusion of mobile ions and bond fluctuations in superionic conductor CuI from ab initio molecular-dynamics simulations. J Phys Soc Jpn. 2003;72:2702–5.

    Article  CAS  Google Scholar 

  16. Shimojo F, Aniya M. Diffusion mechanism of Ag ions in superionic conductor Ag2Se from ab initio molecular-dynamics simulations. J Phys Soc Jpn. 2005;74:1224–30.

    Article  CAS  Google Scholar 

  17. Aniya M, Iseki T. A model for the composition dependence of sound velocity in liquid silver chalcogenides. J Non-Cryst Solids. 2002;312–314:400–3.

    Article  Google Scholar 

  18. Ogawa H, Kobayashi M, Iseki T, Aniya M. Collective motion in liquid silver chalcogenides. J Phys Soc Jpn. 2005;74:2265–9.

    Article  CAS  Google Scholar 

  19. Aniya M, Shimojo F, Iseki T. Composition dependence of diffusion in liquid silver chalcogenides. J Non-Cryst Solids. 2004;338–340:579–81.

    Article  Google Scholar 

  20. Ikeda M, Aniya M. A hydrodynamic model for the collective motion in Ag–Cu–Se. Solid State Ionics. 2008;179:761–4.

    Article  CAS  Google Scholar 

  21. Usuki T, Abe K, Uemura O, Kameda Y. Ionic conduction in liquid Ag–Se and Ag–Te systems. J Phys Soc Jpn. 2001;70:2061–7.

    Article  CAS  Google Scholar 

  22. Mohn CE, Stølen S. Average and local structure of α-CuI by configurational averaging. J Phys Condens Matter. 2007;19:466208.

    Article  Google Scholar 

  23. Phillips JC. Bonds and bands in semiconductors. New York: Academic Press; 1973.

    Google Scholar 

  24. Miyatani S. Ionic conductivity in silver chalcogenides. J Phys Soc Jpn. 1981;50:3415–8.

    Article  CAS  Google Scholar 

  25. Aniya M, Okazaki H, Kobayashi M. Static dielectric function of superionic conductor α-AgI. Phys Rev Lett. 1990;65:1474–7.

    Article  CAS  Google Scholar 

  26. Endo H, Yao M, Ishida K. Ionic conductivity and electronic properties of liquid Ag chalcogenides up to 1500 °C. J Phys Soc Jpn. 1980;48:235–7.

    Article  CAS  Google Scholar 

  27. Kawamura H. Handoutai butsuri. Tokyo: Kyoritsu; 1987.

    Google Scholar 

  28. Harrison WA. Electronic structure and the properties of solids. San Francisco: Freeman; 1980.

    Google Scholar 

  29. Okada T, Kakinuma F, Ohno S. Electronic properties of liquid Cu–Te, Ag–Te, Au–Te and Pb–Te binary alloys. J Phys Soc Jpn. 1983;52:3526–35.

    Article  CAS  Google Scholar 

  30. Schnyders HS, Hahn J, Streutker D, van Zytveld JB. The electronic transport properties of liquid Ag–Te. J Phys Condens Matter. 1997;9:10121–8.

    Article  CAS  Google Scholar 

  31. Shimojo F, Aniya M, Hoshino K. Anomalous cation-cation interactions in molten CuI: ab initio molecular-dynamics simulations. J Phys Soc Jpn. 2004;73:2148–53.

    Article  CAS  Google Scholar 

  32. Shimojo F, Inoue T, Aniya M, Sugahara T, Miyata Y. Ab initio molecular-dynamics study of static structure and bonding properties of molten AgI. J Phys Soc Jpn. 2006;75:114602.

    Article  Google Scholar 

  33. Stanley HE. Introduction to phase transitions and critical phenomena. Oxford: Clarendon Press; 1971.

    Google Scholar 

  34. Glazov VM, Mamedov SM, Burkhanov AS. Analysis of features of the charge transfer mechanism in melts of copper and silver chalcogenides based on studies of electroconductivity and the Hall effect. High Temp. 1987;25:369–75.

    Google Scholar 

  35. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  36. Saraswat S, Kushwaha SSS. Specific heat studies in a-Se and a-Se90M10 (M = In, Sb, Te) alloys. J Therm Anal Calorim. 2009;96:923–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Area (439) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 19560014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Aniya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aniya, M. A model for the anomalous electronic properties in liquid silver chalcogenides. J Therm Anal Calorim 99, 109–115 (2010). https://doi.org/10.1007/s10973-009-0485-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0485-6

Keywords

Navigation