Skip to main content
Log in

Investigating the Magnetocaloric Properties of Magnetically Frustrated Delafossite: AgCrO2

  • Topical Collection: Advanced Materials for Energy Generation and Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The magnetic and magnetocaloric properties of a noncollinear Heisenberg triangular lattice antiferromagnet AgCrO2, synthesized by a hydrothermal method have been investigated. The sample crystallizes into a rhombohedral structure. X-ray photoemission spectroscopy, energy-dispersive x-ray spectroscopy and Fourier transform infrared spectroscopic measurements reveal that the stoichiometry of the sample is commensurate with the nominal composition. Temperature-dependent magnetization measurements indicate a paramagnetic to antiferromagnetic phase transition at TN ~ 21 K. Arrott plots specify that the nature of magnetic transition is first order. Moreover, the system exhibits short-range magnetic fluctuations in the temperature range TN < T < 125 K and obeys the Curie–Weiss law above 125 K with a frustration index of 7.74. Furthermore, the calculated positive isothermal magnetic entropy change (ΔSm) shows nonmonotonic temperature dependence and exhibits a peak at TN. For an external field change of 70 kOe, the obtained magnetic entropy change, relative cooling power and temperature averaged entropy change are 0.067 J kg−1 K−1, 0.586 J kg−1 and 0.050 J kg−1 K−1, respectively. The reported values can be attributed to its stable helical spin-spiral ground state structure as well as transition to a low-symmetry structure that acts as a pathway to release the frustration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data supporting our claims in this study are available with the corresponding author and can be availed upon reasonable request.

References

  1. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, Making a Cool Choice: the Materials Library of Magnetic Refrigeration. Adv. Energy Mater. 9, 1901322 (2019).

    Article  Google Scholar 

  2. K. Gschneidner Jr., and V. Pecharsky, Magnetic Refrigeration Materials. J. Appl. Phys. 85, 5365 (1999).

    Article  CAS  Google Scholar 

  3. V.K. Pecharsky, and K.A. Gschneidner Jr., Magnetocaloric Effect and Magnetic Refrigeration. J. Magn. Magn. Mater. 200, 44 (1999).

    Article  CAS  Google Scholar 

  4. V. Pecharsky, K. Gschneidner Jr., A. Pecharsky, and A. Tishin, Thermodynamics of the Magnetocaloric Effect. Phys. Rev. B 64, 144406 (2001).

    Article  Google Scholar 

  5. A. Tishin, Magnetocaloric Effect: Current Situation and Future Trends. J. Magn. Magn. Mater. 316, 351 (2007).

    Article  CAS  Google Scholar 

  6. J. Liu, X. You, B. Huang, I. Batashev, M. Maschek, Y. Gong, X. Miao, F. Xu, N. van Dijk, and E. Brück, Reversible Low-Field Magnetocaloric Effect in Ni-Mn-In-Based Heusler Alloys. Phys. Rev. Mater. 3, 084409 (2019).

    Article  CAS  Google Scholar 

  7. B.D. White, R. Barabash, O. Barabash, I. Jeon, and M. Maple, Magnetocaloric Effect Near Room Temperature in Quintenary and sexTenary Heusler Alloys. J. Appl. Phys. 126, 165101 (2019).

    Article  Google Scholar 

  8. S. Sun, H. Qin, L. Kong, R. Ning, Y. Zhao, Z. Gao, and W. Cai, Defect Engineering: Electron-Exchange Integral Manipulation to Generate a Large Magnetocaloric Effect in Ni41Mn43Co6Sn10 Alloys. ACS Appl. Mater. Interfaces 13, 57372 (2021).

    Article  CAS  Google Scholar 

  9. J.Y. Law, L.M. Moreno-Ramírez, Á. Díaz-García, A. Martín-Cid, S. Kobayashi, S. Kawaguchi, T. Nakamura, and V. Franco, MnFeNiGeSi High-Entropy Alloy with Large Magnetocaloric Effect. J. Alloys Compd. 855, 157424 (2021).

    Article  CAS  Google Scholar 

  10. Y. Si, J. Liu, Y.-Y. Gong, S.-Y. Yuan, G. Peng, G.-Z. Xu, and F. Xu, Magnetostructural Transformation and Magnetocaloric Effect of Sn-Bonded Mn0.66Fe0.34Ni0.66Fe0.34Si0.66Ge0.34 Composite. Sci. Rep. 8, 1 (2018).

    Article  CAS  Google Scholar 

  11. N. Bruno and S. Yuce, On the Instability of the Giant Direct Magnetocaloric Effect in CoMn0.915Fe0.085Ge at.% Metamagnetic Compounds. Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  12. S. Gama, A.A. Coelho, A. de Campos, A.M.G. Carvalho, F.C. Gandra, P.J. von Ranke, and N.A. de Oliveira, Pressure-Induced Colossal Magnetocaloric Effect in MnAs. Phys. Rev. Lett. 93, 237202 (2004).

    Article  Google Scholar 

  13. L. Tocado, E. Palacios, and R. Burriel, Entropy Determinations and Magnetocaloric Parameters in Systems with First-Order Transitions: Study of MnAs. J. Appl. Phys. 105, 093918 (2009).

    Article  Google Scholar 

  14. H. Wada and Y. Tanabe, Giant Magnetocaloric Effect of MnAs1−xSbx. Appl. Phys. Lett. 79, 3302 (2001).

    Article  CAS  Google Scholar 

  15. D. Cam Thanh, E. Brück, O. Tegus, J. Klaasse, T. Gortenmulder, and K. Buschow, Magnetocaloric Effect in MnFe(P, Si, Ge) Compounds. J. Appl. Phys. 99, 08Q107 (2006).

    Article  Google Scholar 

  16. F. Guillou, H. Yibole, G. Porcari, L. Zhang, N. Van Dijk, and E. Brück, Magnetocaloric Effect, Cyclability and Coefficient of Refrigerant Performance in the MnFe(P, Si, B) System. J. Appl. Phys. 116, 063903 (2014).

    Article  Google Scholar 

  17. H. Yibole, F. Guillou, L. Caron, E. Jiménez, F. De Groot, P. Roy, R. De Groot, E. Van Dijk, and Brück, Moment Evolution Across the Ferromagnetic Phase Transition of Giant Magnetocaloric (Mn, Fe)2(P, Si, B) Compounds. Phys Rev B 91, 014429 (2015).

    Article  Google Scholar 

  18. A. Midya, N. Khan, D. Bhoi, and P. Mandal, Giant Magnetocaloric Effect in Magnetically Frustrated EuHo2O4 and EuDy2O4 Compounds. Appl. Phys. Lett. 101, 132415 (2012).

    Article  Google Scholar 

  19. M. Orendáč, S. Gabáni, E. Gažo, G. Pristáš, N. Shitsevalova, K. Siemensmeyer, and K. Flachbart, Rotating Magnetocaloric Effect and Unusual Magnetic Features in Metallic Strongly Anisotropic Geometrically Frustrated TmB4. Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  20. M. Orendáč, P. Farkašovský, L. Regeciová, S. Gabáni, G. Pristáš, E. Gažo, J. Bačkai, P. Diko, A. Dukhnenko, and N. Shitsevalova, Tuning the Magnetocaloric Effect in the Lu-Doped Frustrated Shastry-Sutherland System TmB4. Phys. Rev. B 102, 174422 (2020).

    Article  Google Scholar 

  21. M. Zhitomirsky, Enhanced Magnetocaloric Effect in Frustrated Magnets. Phys. Rev. B 67, 104421 (2003).

    Article  Google Scholar 

  22. M. Pereira, F. de Moura, and M. Lyra, Magnetocaloric Effect in Kinetically Frustrated Diamond Chains. Phys. Rev. B 79, 054427 (2009).

    Article  Google Scholar 

  23. J. Schnack, R. Schmidt, and J. Richter, Enhanced Magnetocaloric Effect in Frustrated Magnetic Molecules with Icosahedral Symmetry. Phys. Rev. B 76, 054413 (2007).

    Article  Google Scholar 

  24. R.C. Alécio, J. Strečka, and M.L. Lyra, Thermodynamic Behavior and Enhanced Magnetocaloric Effect in a Frustrated Spin-12 Ising-Heisenberg Triangular Tube. J. Magn. Magn. Mater. 451, 218 (2018).

    Article  Google Scholar 

  25. A.B. Garg and R. Rao, Copper Delafossites under High Pressure: A Brief Review of XRD and Raman Spectroscopic Studies. Curr. Comput. Aided Drug Des. 8, 255 (2018).

    Google Scholar 

  26. E. Kan, H. Xiang, Y. Zhang, C. Lee, and M.-H. Whangbo, Density-Functional Analysis of Spin Exchange and Ferroelectric Polarization in AgCrO2. Phys. Rev. B 80, 104417 (2009).

    Article  Google Scholar 

  27. A. Lopes, G. Oliveira, T. Mendonça, J.A. Moreira, A. Almeida, J. Araújo, V. Amaral, and J. Correia, Local Distortions in Multiferroic AgCrO2 Triangular Spin Lattice. Phys. Rev. B 84, 014434 (2011).

    Article  Google Scholar 

  28. S. Kumar, M. Miclau, and C. Martin, Hydrothermal Synthesis of AgCrO2 Delafossite in Supercritical Water: A New Single-Step Process. Chem. Mater. 25, 2083 (2013).

    Article  CAS  Google Scholar 

  29. M. Hemmida, H.-A. Krug von Nidda, and A. Loidl, Traces of Z 2-Vortices in CuCrO2, AgCrO2, and PdCrO2. J. Phys. Soc. Japan 80, 053707 (2011).

    Article  Google Scholar 

  30. G.B. Hoflund, J.F. Weaver, and W.S. Epling, Ag2O XPS Spectra. Surf. Sci. Spectra 3, 157 (1994).

    Article  CAS  Google Scholar 

  31. Y.-J. Chen, Y.-W. Chiang, and M.H. Huang, Synthesis of Diverse Ag2O Crystals and their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 8, 19672 (2016).

    Article  CAS  Google Scholar 

  32. W. Han, Z. Wang, X. Li, H. Tang, M. Xi, Y. Li, and H. Liu, Solution Combustion Synthesis of Nano-chromia as Catalyst for the Dehydrofluorination of 1, 1-Difluoroethane. J. Mater. Sci. 51, 11002 (2016).

    Article  CAS  Google Scholar 

  33. Z. Song, W. Li, W. Liu, Y. Yang, N. Wang, H. Wang, and H. Gao, Novel Magnetic Lignin Composite Sorbent for Chromium (VI) Adsorption. RSC Adv. 5, 13028 (2015).

    Article  CAS  Google Scholar 

  34. M. Stefanescu, M. Barbu, T. Vlase, P. Barvinschi, L. Barbu-Tudoran, and M. Stoia, Novel Low Temperature Synthesis Method for Nanocrystalline Zinc and Magnesium Chromites. Thermochim. Acta 526, 130 (2011).

    Article  CAS  Google Scholar 

  35. A. Athawale and P. Desai, Silver Doped Lanthanum Chromites by Microwave Combustion Method. Ceram. Int. 37, 3037 (2011).

    Article  CAS  Google Scholar 

  36. S. Seki, Y. Onose, and Y. Tokura, Spin-Driven Ferroelectricity in Triangular Lattice Antiferromagnets ACrO2 (A= Cu, Ag, Li, or Na). Phys. Rev. Lett. 101, 067204 (2008).

    Article  CAS  Google Scholar 

  37. Y. Oohara, S. Mitsuda, H. Yoshizawa, N. Yaguchi, H. Kuriyama, T. Asano, and M. Mekata, Magnetic Phase Transition in AgCrO2. J. Phys. Soc. Jpn. 63, 847 (1994).

    Article  CAS  Google Scholar 

  38. D. Johnston, Magnetic Susceptibility of Collinear and Noncollinear Heisenberg Antiferromagnets. Phys. Rev. Lett. 109, 077201 (2012).

    Article  CAS  Google Scholar 

  39. A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (Boca Raton: CRC Press, 2016).

    Book  Google Scholar 

  40. O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K.P. Skokov, H. Wende, M. Gruner, M. Acet, and P. Entel, Mastering Hysteresis in Magnetocaloric Materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150308 (2016).

    Article  Google Scholar 

  41. B. Banerjee, On a Generalised Approach to First and Second Order Magnetic Transitions. Phys. Lett. 12, 16 (1964).

    Article  Google Scholar 

  42. V. Franco, J. Blázquez, J. Ipus, J. Law, L. Moreno-Ramírez, and A. Conde, Magnetocaloric Effect: From Materials Research to Refrigeration Devices. Prog. Mater. Sci. 93, 112 (2018).

    Article  Google Scholar 

  43. N.A. Zarkevich and V.I. Zverev, Viable Materials with a Giant Magnetocaloric Effect. Curr. Comput.-Aided Drug Des. 10, 815 (2020).

    CAS  Google Scholar 

  44. L. Griffith, Y. Mudryk, J. Slaughter, and V.K. Pecharsky, Material-Based Figure of Merit for Caloric Materials. J. Appl. Phys. 123, 034902 (2018).

    Article  Google Scholar 

  45. L. Zhang, B.A. Goodman, D. Xiong, and W. Deng, Magnetic Transitions in delafoSsite CuFeO2: A Magnetocaloric Effect Study. Phys. Lett. A 383, 125834 (2019).

    Article  CAS  Google Scholar 

  46. M.A. Hamad, O. Hemeda, H.R. Alamri, and A.M. Mohamed, Magnetocaloric Effect for NaFeO2 Nanoparticles. J. Supercond. Nov. Magn. 33, 3853 (2020).

    Article  CAS  Google Scholar 

  47. M. Xu, H. Dai, T. Li, K. Peng, J. Chen, Z. Chen, Y. Xue, X. Cao, and B. Wang, Effect of Transition Metal ion Doping on the Microstructure, Defect Evolution, and Magnetic and Magnetocaloric Properties of CuFeO2 Ceramics. J. Supercond. Nov. Magn. 33, 2881 (2020).

    Article  CAS  Google Scholar 

  48. T. Elkhouni, M. Amami, E. Hlil, and A.B. Salah, The Structural and Magnetic Properties of CuRh1−xMnxO2 (0≤ x≤ 0.1) Delafossite Oxide. J. Supercond. Nov. Magn. 29, 547 (2016).

    Article  CAS  Google Scholar 

  49. Y. Zhang, E. Kan, and M.-H. Whangbo, Density Functional Investigation of the Difference in the Magnetic Structures of the Layered Triangular Antiferromagnets CuFeO2 and AgCrO2. Chem. Mater. 23, 4181 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the XRD facility at the SRM Institute of Science and Technology (SRMIST) setup with support from the Ministry of New and Renewable Energy (MNRE) (Project No. 31/03/2014-15/PVSE-R&D), Government of India. The authors thank SRMIST for use of the High Resolution Scanning Electron Microscope (HR-SEM) facility, and also the Nanotechnology Research Center (NRC), SRMIST, for providing the research facilities. The authors acknowledge the University Grants Commission–Department of Atomic Energy–Consortium for Scientific Research (UGC-DAE-CSR) node at Kokilamedu for providing access to VSM facility.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KM: Investigation, data curation, writing—original draft. ATS: investigation, methodology. PG: formal analysis, visualization. SP: validation, methodology. AM: validation, resources. KV: supervision, resources, conceptualization, methodology.

Corresponding authors

Correspondence to S. Paulraj or Kathirvel Venugopal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Sathyanarayana, A.T., Govindaraj, P. et al. Investigating the Magnetocaloric Properties of Magnetically Frustrated Delafossite: AgCrO2. J. Electron. Mater. 52, 1652–1661 (2023). https://doi.org/10.1007/s11664-022-10014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10014-0

Keywords

Navigation