Skip to main content
Log in

Exploration of structural stability, electronic, and magnetic properties of silver doped MgO at low concentration using the modified Becke and Johnson approach for spintronic applications

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In order to improve the physical properties of MgO and make it useful for interesting optoelectronic and spintronic applications, we proceed to dope it with silver. To do so, we investigate the structural, electronic, and magnetic properties of pure MgO in the rock-salt structure and MgO doped with a transition metal Ag at different concentrations [x = 0%, 3.125% (SC), 6.25% (BCC), 12.5% (FCC), and 25% (FCC)]. The generalized gradient approximation, proposed by Wu and Cohen (GGA-WC), was employed for the structural parameters calculation, and the Tran Blaha-modified Becke Johnson (TB-mBJ) correction was used to investigate the electronic and magnetic properties. The structural results show that AgxMg1−xO lattice parameters increase with increasing Ag doping atom concentration. The formation energy values of the compounds demonstrate their stability and point to the possibility of their synthesis. We found that the electronic structures of Ag0.125Mg0.875O, Ag0.062Mg0.938O, and Ag0.031Mg0.969O compounds are half-metallic with ferromagnetic behavior and a total magnetic moment of 1 μB and are 100% spin-polarized; this leads us to believe that those Ag impurity atoms are the most prominent generators of magnetic moments. It should be noted that the compound is a nonmagnetic metal at a concentration of 25%. With increasing impurity concentration, the half-metallic ferromagnetic gap narrows. You can go from a direct semiconductor (x = 0%) to a direct half metal (6.25% (BCC) and 12.5% (FCC)) to an indirect half metallic with a low concentration of 3.125% (SC) by varying the Ag concentration. Magnetic properties, Curie temperature, and the exchange constants N and N are also investigated, and the ferromagnetic behavior is confirmed. The results indicated that doping MgO with a low Ag concentration may be appropriate for spintronic applications and magnetic data storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors' comment:...]. The data supporting this study's findings are not openly available and are available from the corresponding author upon reasonable request.

References

  1. Y. Tan, S.-N. Hsu, H. Tahir, L. Dou, L. Dou, B.M. Savoie, B.W. Boudouris, J. Am. Chem. Soc. 144, 626 (2022)

    Google Scholar 

  2. L.B. Chandrasekar, K. Gnanasekar, M. Karunakaran, Superlattices Microstruct. 136, 749 (2019)

    Google Scholar 

  3. M. Dadsetani, R. Beiranvand, Solid State Sci. 11, 2099 (2009)

    ADS  Google Scholar 

  4. M. Scarsella, B.D. Caprariis, M. Damizia, P.D. Filippis, Biomass Bioenerg. 140, 105662 (2020)

    Google Scholar 

  5. J.A. McLeod, R.G. Wilks, N.A. Skorikov, L.D. Finkelstein, M. Abu-Samak, E.Z. Kurmaev, A. Moewes, Phys. Rev. B 81, 245123 (2010)

    ADS  Google Scholar 

  6. S.A. Gad, G.M. El Komy, A.M. Moustafa, A.A. Ward, Indian J. Phys. 93, 1009 (2019)

    ADS  Google Scholar 

  7. H. Xiang et al., J. Adv. Ceramics. 10, 385 (2021)

    Google Scholar 

  8. R. Vladoiu, A. Mandes, V. Dinca, P. Kudrna, M. Tichý, S. Polosan, J. Alloy. Compd. 869, 925 (2021)

    Google Scholar 

  9. W. Tayeb Halais, S. Chettibi, Mate. Today: Proc. 51, 2091 (2022)

    Google Scholar 

  10. H.S. Saini, M. Singh, A.H. Reshak, M.K. Kashyap, J. Alloy. Compd. 536, 214 (2012)

    Google Scholar 

  11. R.A. de Groot, F.M. Mueller, P.G. Van Engen, K.H.J. Bushow, Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Google Scholar 

  12. M. Boutaleb, B. Doumi, A. Mokaddem, A. Sayed, A. Tadjer, J. Supercond. Novel Magn. 31, 2157 (2018)

    Google Scholar 

  13. A. Benamrani, S. Daoud, N. Bouarissa, Eur. Phys. J. B. 95, 106 (2022)

    ADS  Google Scholar 

  14. I. Benaisti, N. Guechi, M. Dehbaoui, A. Roumili, Eur. Phys. J. B. 95, 109 (2022)

    ADS  Google Scholar 

  15. K. Naveen et al., Phys. Chem. Chem. Phys. 23, 21769 (2021)

    Google Scholar 

  16. R. Amraoui, M. Doghmane, S. Chettibi, D.F. Laefer, Chin. J. Phys. 55, 2393 (2017)

    Google Scholar 

  17. N.A. Teli, M.M.S. Sirajuddeen, Phys. Scr. 95, 025801 (2020)

    ADS  Google Scholar 

  18. J. Wang, Y. Tu, L. Yang, H. Tolner, J. Comput. Electron. 15, 1521 (2016)

    Google Scholar 

  19. A. Kruk, M. Trubitsyn, Acta Phys. Pol. A 138, 557 (2020)

    ADS  Google Scholar 

  20. M.F.M. Taib, D.T. Mustaffa, N.H. Hussin, M.H. Samat, A.M.M. Ali, O.H. Hassan, M.Z.A. Yahya, Mater. Res. Express. 6, 094012 (2019)

    ADS  Google Scholar 

  21. S. El-Gamal, M. Elsayed, Polym. Testing 89, 106681 (2020)

    Google Scholar 

  22. M. Chandrasekar et al., Sep. Purif. Technol. 294, 121189 (2022)

    Google Scholar 

  23. S. Thankachan, M.V. Femsy, S.N. John, Mater. Today: Proc. 25, 289 (2020)

    Google Scholar 

  24. K. Saravanakumar, M.H. Wang, Adv. Powder Technol. 30, 786 (2019)

    Google Scholar 

  25. J.P. Singh, V. Singh, A. Sharma, G. Pandey, K.H. Chae, S.L. Pande, Heliyon 6, e04882 (2020)

    Google Scholar 

  26. N. Huang, H. Liu, H. Hao, Z. Yao, M. Cao, J. Xie, Ceram. Int. 45, 14921 (2019)

    Google Scholar 

  27. F.W.Q. Almeida-Neto, G. Santos-Castro, M.B. da Silva, J.S. de Sousa, E.W.S. Caetano, P. Lima-Neto, V.N. Freire, J. Appl. Phys. 125, 155102 (2019)

    ADS  Google Scholar 

  28. B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, P. Darabi, Results Phys. 12, 2038 (2019)

    ADS  Google Scholar 

  29. G. Balakrishnan, R. Velavan, K. MujasamBatoo, E.H. Raslan, Results Phys. 16, 103013 (2020)

    Google Scholar 

  30. Taib, M. F. M., et al. Int. J. Nanoelectron. Mater. 13 (2020)

  31. G. Liu, S. Ji, L. Yin, G. Fei, C. Ye, J. Phys.: Condens. Matter 22, 046002 (2010)

    ADS  Google Scholar 

  32. C. Martínez-Boubeta et al., Phys. Rev. B 82, 024405 (2010)

    ADS  Google Scholar 

  33. V. Guckana, S.W. Bokhari, V. Altunal, A. Ozdemir, W. Gaob, Z. Yegingil, Nuclear Inst. Methods Phys. Res. B. 503, 53 (2021)

    ADS  Google Scholar 

  34. P. Wu, G. Cao, F. Tang, M. Huang, Comput. Mater. Sci. 86, 180 (2014)

    Google Scholar 

  35. L.J. Shi, Phys. Lett. A 374, 1292 (2010)

    ADS  Google Scholar 

  36. A.D. Moghadam, P. Maskane, S. Esfandiari, Phys. C. 549, 33 (2018)

    ADS  Google Scholar 

  37. M. Bilal, M. Umar, E.M. Bakhsh, J. Ali, R. Ahmad, K. Akhtar, S.B. Khan, J. Mol. Liq. 339, 117176 (2021)

    Google Scholar 

  38. M.M. Obeid, S.J. Edrees, M.M. Shukur, Superlattices Microstruct. 122, 124 (2018)

    ADS  Google Scholar 

  39. M. Seike, V.A. Dinh, K. Sato, H.K. Yoshida, Physica B 407, 2875 (2012)

    ADS  Google Scholar 

  40. N.A. Teli, M.M.S. Sirajuddeen, I.U.N. Lone, Solid State Sci. 99, 106048 (2020)

    Google Scholar 

  41. K. Klaa, S. Labidi, A. Banerjee, S. Chakraborty, M. Labidi, A. Amara, M. Bououdina, R. Ahuja, J. Magn. Magn. Mater. 475, 44 (2019)

    ADS  Google Scholar 

  42. N. Ali, A.R. Vijaya, Z.A. Khan, K. Tarafder, A. Kumar, M.K. Wadhwa, B. Singh, S. Ghosh, Sci. Rep. 91, 20039 (2019)

    Google Scholar 

  43. R.J. Ramalingam et al., Intermetallics 131, 107101 (2021)

    Google Scholar 

  44. M. Thukkaram et al., Appl. Surf. Sci. 500, 144235 (2020)

    Google Scholar 

  45. N.A. Teli, M.M.S. Sirajuddeen, J. Supercond. Novel Magn. 33, 2795 (2020)

    Google Scholar 

  46. A.Y. Li, X.D. Li, Q.B. Lin, S.Q. Wu, Z.Z. Zhu, Solid State Sci. 14, 769 (2012)

    ADS  Google Scholar 

  47. K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259 (2003)

    Google Scholar 

  48. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, J. Chem. Phys. 152, 074101 (2020)

    ADS  Google Scholar 

  49. H. Eschrig, G. Seifert, P. Ziesche, Solid State Commun. 56, 777 (1985)

    ADS  Google Scholar 

  50. D. Koller, F. Tran, P. Blaha, Phys. Rev. B Condens. Matter. 83, 19 (2011)

    ADS  Google Scholar 

  51. Y. Daoudi, H.M.A. Mazouz, M.A. Fadla, A. Benghia, J. Magn. Magn. Mater. 538, 168315 (2021)

    Google Scholar 

  52. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    ADS  Google Scholar 

  53. I. Campillo, J.M. Pitarke, A. Rubio, P.M. Echenique, Phys. Rev. B 13, 5188 (1976)

    MathSciNet  Google Scholar 

  54. A. Kokalj, J. Mol. Graph. Model. 17, 176 (1999)

    Google Scholar 

  55. Y. Chen, J. Yang, W. Mi, Q. Song, H. Yan, Solid State Commun. 194, 1 (2014)

    ADS  Google Scholar 

  56. N.A. Teli, M.M.S. Sirajuddeen, Comput. Condens. Matter. 20, e00386 (2019)

    Google Scholar 

  57. L. Chouhan, G. Bouzerar, S.K. Srivastava, Vacuum 182, 109716 (2020)

    ADS  Google Scholar 

  58. A. Ali, R. Raza, R.A. Khalil, M.A. Ahmad, A. Rafique, M.K. Ullah et al., Ceram. Int. 44, 12676 (2018)

    Google Scholar 

  59. H. Bouafia, B. Sahli, M.A. Timaoui, B. Djebour, S. Hiadsi, B. Abidri, Physica B 530, 167 (2018)

    ADS  Google Scholar 

  60. A. Bourega, B. Doumi, A. Mokaddem, A. Sayede, A. Tadjer, Opt. Quantum Electron. 51, 385 (2019)

    Google Scholar 

  61. H. Absike, M. Hajji, H. Labrim, A. Abbassi, H. Ez-Zahraouy, Superlattices Microstruct. 127, 128 (2019)

    ADS  Google Scholar 

  62. P. Garcia-Fernandez, C. Sousa, J.A. Aramburu, M.T. Barriuso, M. Moreno, Phys. Rev. B 72, 155107 (2005)

    ADS  Google Scholar 

  63. N.A. Teli, M.M.S. Sirajuddeen, J. Magn. Magn. Mater. 511, 166829 (2020)

    Google Scholar 

  64. M. Wang, S. Tang, D. Hou, F. Meng, Y. Han, J. Ren, T. Zhou, Physica B 590, 412214 (2020)

    Google Scholar 

  65. W.Z. Xiao, L.L. Wang, L. Xu, X.F. Li, H.Q. Deng, Physica Status Solidi (b) 248, 1961 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

THW: calculations, conceptualization, methodology, software, formal analysis, investigation, resources, writing original drafts, writing, reviewing and editing, visualization. AB: methodology, reviewing and editing, visualization. MD: writing, reviewing and editing, visualization. CS: conceptualization, validation, supervision, data curation, writing, reviewing and editing, resources, and project administration. Approval of the version of the manuscript to be published (the names of all authors must be listed): THW, AB, MD, CS.

Corresponding author

Correspondence to Wissem Tayeb Halais.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halais, W.T., Bouhlala, A., Doghmane, M. et al. Exploration of structural stability, electronic, and magnetic properties of silver doped MgO at low concentration using the modified Becke and Johnson approach for spintronic applications. Eur. Phys. J. B 96, 75 (2023). https://doi.org/10.1140/epjb/s10051-023-00538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00538-7

Navigation