Skip to main content
Log in

Metal complexes of fenoterol drug

Preparation, spectroscopic, thermal, and biological activity characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Metal complexes of fenoterol (FEN) drug are prepared and characterized based on elemental analyses, IR, 1H NMR, magnetic moment, molar conductance, and thermal analyses (TG and DTA) techniques. From the elemental analyses data, the complexes are formed in 1:2 [Metal]:[FEN] ratio and they are proposed to have the general formula [Cu(FEN)2]·2H2O; [M(FEN)2(H2O)2yH2O (where M = Mn(II) (y = 2), Co(II) (y = 4), Ni(II) (y = 4), and Zn(II) (y = 0) and [Cr(FEN)2(H2O)2]Cl·H2O. The molar conductance data reveal that all the metal chelates are non-electrolytes except Cr(III) complex, having 1:1 electrolyte. IR spectra show that FEN is coordinated to the metal ions in a uninegative bidentate manner with ON donor sites of the aliphatic –OH and secondary amine –NH. From the magnetic moment measurements, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Mn(II), Co(II), Ni(II), and Zn(II)) and square planar (Cu(II)). The thermal behavior of these chelates is studied using thermogravimetric and differential thermal analyses (TG and DTA) techniques. The results obtained show that the hydrated complexes lose water molecules of hydration followed immediately by decomposition of the coordinated water and ligand molecules in the successive unseparate steps. The FEN drug, in comparison to its metal complexes is also screened for their antibacterial activity against bacterial species (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella typhi), Yeasts (Candida albicans and Saccharomyces cervisiae), and Fungi (Aspergillus niger and Aspergillus flavus). The activity data show that the metal complexes have antibacterial activity like that of the parent FEN drug against one or more species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beigi F, Bertucci C, Zhu W, Chakir K, Wainer IW, Xiao RP, et al. Enantioselective separation and online affinity chromatographic characterization of R,R- and S,S-fenoterol. Chirality. 2006;18:822–7.

    Article  CAS  Google Scholar 

  2. Jźwiak K, Khalid C, Tanga MJ, Berzetei-Gurske I, Jimenez L, Kozocas JA, et al. Comparative molecular field analysis of the binding of the stereoisomers of fenoterol and fenoterol derivatives to the beta-2-adrenergic receptor. J Med Chem. 2007;50:2903–15.

    Article  Google Scholar 

  3. Wilson AA, Wang J, Koch P, Walle T. Stereoselective sulphate conjugation of fenoterol by human phenolsulphotransferases. Xenobiotica. 1997;27:1147–54.

    Article  CAS  Google Scholar 

  4. Rominger KL, Mentrup A, Stiasni M. Radioimmunological determination of fenoterol. Part II: antiserum and tracer for the determination of fenoterol. Arzneimittelforschung. 1990;40:887–95.

    CAS  Google Scholar 

  5. Haasnoot W, Stouten P, Lommen A, Cazemier G, Hooijerink D, Schilt R. Determination of fenoterol and ractopamine in urine by enzyme immunoassay. Analyst. 1994;119:2675–80.

    Article  CAS  Google Scholar 

  6. Damasceno L, Ventura R, Cardoso J, Segura J. Diagnostic evidence for the presence of β-agonists using two consecutive derivatization procedures and gas chromatography–mass spectrometric analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;780:61–71.

    Article  CAS  Google Scholar 

  7. Couper FJ, Drummer OH. Gas-chromatograpic-mass-spectrometric detractions of beta-2-agonists in post mortem blood. J Chromatogr B Biomed Appl. 1996;685:265–72.

    Article  CAS  Google Scholar 

  8. Doerge DR, Bajic S, Blankenship LR, Preece SW, Churchwell MI. Determination of β-agonist residues in human plasma using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry and tandem mass spectrometry. J Mass Spectrom. 1995;30:911–6.

    Article  Google Scholar 

  9. Kramer S, Blaschke G. High-performance liquid chromatographic determination of the b2-selective adrenergic agonist fenoterol in human plasma after fluorescence derivatization. J Chromatogr B Biomed Sci Appl. 2001;751:169–75.

    Article  CAS  Google Scholar 

  10. Grayer RJ, Harbone JB. A survey of antifungal compounds from higher plants. Phytochemistry. 1994;37:19–42.

    Article  CAS  Google Scholar 

  11. Salama F, El-Abasawy N, Abdel Razeq SA, Ismail MMF, Fouad MM. Validation of the spectrophotometric determination of omeprazole and pantoprazole sodium via their metal chelates. J Pharm Biomed Anal. 2003;33:411–21.

    Article  CAS  Google Scholar 

  12. Mohamed GG, Nour El-Dien FA, Khalil SM, Mohammad AS. Metal complexes of omeprazole. Preparation, spectroscopic and thermal characterization and biological activity. J Coord Chem. 2009;62:645–54.

    Article  CAS  Google Scholar 

  13. Icbudak H, Heren Z, Köse DA, Necefoglu H. bis (nicotinamide) and bis (N, N-diethyl nicotinamide) p-hydroxybenzoate complexes of Ni(II), Cu(II) AND Zn(II). J Therm Anal Calorim. 2004;76:837–51.

    Article  CAS  Google Scholar 

  14. Köse DA, Necefoğlu H. Synthesis and characterization of bis (nicotinamide) m-hydroxy-benzoate complexes of Co(II), Ni(II), Cu(II) and Zn(II). J Therm Anal Calorim. 2008;93:509–14.

    Article  Google Scholar 

  15. Köse DA, Gökçe G, Gökçe S, Uzun I. bis (N, N-diethylnicotinamide) p-chlorobenzoate complexes of Ni(II), Zn(II) and Cd(II). Synthesis and characterization. J Therm Anal Calorim. 2009;95:247–51.

    Article  Google Scholar 

  16. Santos AFO, Basílio ID, de Souza FS, Medeiros AFD, Pinto MF, de Santana DP, et al. Application of thermal analysis in study of binary mixtures with metformin. J Therm Anal Calorim. 2008;93:361–4.

    Article  CAS  Google Scholar 

  17. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. 6th ed. New York: Wiley; 1999.

    Google Scholar 

  18. Zayed MA, Nour El-Dien FA, Mohamed GG, El-Gamel NEA. FT-IR, magnetic, mass spectra, XRD and thermal studies of metal chelates of tenoxicam. J Mol Struct. 2007;841:41–50.

    Article  CAS  Google Scholar 

  19. Mohamed GG. New cyclodiphosph(V)azane complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II): preparation, characterization and biological studies. Phosphorus Sulfur Silicon Relat Elem. 2005;180:1569–84.

    Article  Google Scholar 

  20. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;20:68–79.

    Article  Google Scholar 

  21. Caudhary A, Singh RV. Synthetic, structural and biological studies on divalent tin complexes of sixteen to twenty-four membered tetraaza macrocycles. Phosphorus Sulfur Silicon Relat Elem. 2003;178:603–13.

    Article  Google Scholar 

  22. Jawetz E, Melnick JL, Adelberg EA. Review of medical microbiology. 16th ed. Los Anglos, CA: Lang Medical Publications; 1979.

    Google Scholar 

  23. Hughes WH, Stewart HC. Concise antibiotic treatment. London: Butter Worth; 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad G. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, M.H., Mohamed, G.G. & Mohamed, E.A. Metal complexes of fenoterol drug. J Therm Anal Calorim 99, 639–647 (2010). https://doi.org/10.1007/s10973-009-0421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0421-9

Keywords

Navigation