Skip to main content
Log in

Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lagno F, Demopoulos GP. Synthesis of hydrated aluminum phosphate, AlPO4·1.5H2O (AlPO4−H3), by controlled reactive crystallization in sulfate media. Ind Eng Chem Res. 2005;44:8033–8.

    Article  CAS  Google Scholar 

  2. Siva Kumar V, Padmasri AH, Satyanarayana CVV, Ajit Kumar Reddy I, David Raju B, Rama Rao KS. Nature and mode of addition of phosphate precursor in the synthesis of aluminum phosphate and its influence on methanol dehydration to dimethyl ether. Catal Commun. 2006;7:745–51.

    Article  CAS  Google Scholar 

  3. Guti′errez-Mora F, Goretta KC, Singh D, Routbort JL, Sambasivan S, Steiner KA, et al. High-temperature deformation of amorphous AlPO4-based nano-composites. J Eur Ceram Soc. 2006;26:1179–83.

    Article  CAS  Google Scholar 

  4. Mostafa MR, Ahmed FSh. Characterization and catalytic behaviour of Co3(PO4)2–AlPO4 catalysts. Adsorb Sci Technol. 1998;16:285–93.

    CAS  Google Scholar 

  5. Ahmed FSh, Mostafa MR, Kiwan HH. Characterization and catalytic activity of Cr2O3–Al2O3/AlPO4 catalysts. Adsorb Sci Technol. 2000;18:709–17.

    Article  CAS  Google Scholar 

  6. Mohamed FSh, Kiwan HH, Mostafa MR. Effect of chemical composition on the structure and catalytic behaviour of AlPO4 and Al2O3–AlPO4 mixed catalysts. Adsorb Sci Technol. 2002;20:131–40.

    Article  CAS  Google Scholar 

  7. Arjona AM, Franco MAA. Kinetics of the thermal dehydration of variscite and specific surface area of the solid decomposition products. J Therm Anal Calorim. 1973;5:319–28.

    Article  Google Scholar 

  8. Stojakovic D, Rajic N, Sajic S, Logar NZ, Kaucic V. A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4-21. J Therm Anal Calorim. 2007;87:337–43.

    Article  CAS  Google Scholar 

  9. Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O–H4 precursor. J Therm Anal Calorim. 2007;91:511–6.

    Article  CAS  Google Scholar 

  10. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  11. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  12. Vlase T, Vlase G, Brita N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  13. Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman spectroscopy. New York: Academic Press; 1964.

    Google Scholar 

  14. Frost RL, Weier ML, Martens WN, Henry DA, Mills SJ. Raman spectroscopy of newberyite, hannayite and struvite. Spectrochim Acta. 2005;62A:181–8. (and Ref. therein).

    CAS  Google Scholar 

  15. Scaccia S, Carewska M, Di Bartolomeo A, Prosini PP. Thermoanalytical investigation of nanocrystalline iron (II) phosphate obtained by spontaneous precipitation from aqueous solutions. Thermochim Acta. 2002;383:141–5. (and Ref. therein).

    Article  Google Scholar 

  16. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  17. Zhang K, Hong J, Cao G, Zhan D, Tao Y, Cong C. The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  18. Budrugeac P. The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters. J Therm Anal Calorim. 2007;89:143–51.

    Article  CAS  Google Scholar 

  19. Gabal MA. Kinetics of the thermal decomposition of CuC2O4−ZnC2O4 mixture in air. Thermochim Acta. 2003;402:199–208.

    Article  CAS  Google Scholar 

  20. Cordes HM. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72:2185–9.

    Article  CAS  Google Scholar 

  21. Criado JM, Pérez-Maqueda LA, Sánchez-Jiménez PE. Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  22. Anilkumar GM, Sung Y-M. Phase formation kinetics of nanoparticle-seeded strontium bismuth tantalate powder. J Mater Sci. 2003;38:1391–6.

    Article  CAS  Google Scholar 

  23. Zhao MS, Song XP. Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. J Power Source. 2007;164:822–8.

    Article  CAS  Google Scholar 

  24. Zhang Y, Lv M, Chen D, Wu J. Leucite crystallization kinetics with kalsilite as a transition phase. Mater Lett. 2007;61:2978–81.

    Article  CAS  Google Scholar 

  25. Singh BK, Sharma RK, Garg BS. Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions. J Therm Anal Calorim. 2006;84:593–600.

    Article  CAS  Google Scholar 

  26. Ŝesták J. Thermodynamical properties of solids. Prague: Academia; 1984.

    Google Scholar 

  27. Young D. Decomposition of solids. Oxford: Pergamon Press; 1966.

    Google Scholar 

  28. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M, Anal J. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. Appl Pyrol. 2008;81:253–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Chemistry Department, Khon Kaen University for providing research facilities. This work is financially supported by King Mongkut’s Institute of Technology Ladkrabang (KMITL) and the Center excellence for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), Ministry of Education, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanaiporn Danvirutai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonchom, B., Danvirutai, C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim 98, 771–777 (2009). https://doi.org/10.1007/s10973-009-0292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0292-0

Keywords

Navigation