Skip to main content
Log in

Synthesis and thermal decomposition of SrTi1−x Fe x O3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work reports on the synthesis of a SrTi1−x Fe x O3 nanostructured compound (0.0 ≤ x ≤ 0.1) using a modified polymeric precursor method. The effect of the addition of iron on the thermal, structural and morphological properties of the nanoparticles was investigated by FT-IR spectroscopy, X-ray diffraction, and field emission scanning electron microscopy (FE-SEM). A thermogravimetric analysis indicated that the crystallization process preceded by three decomposition steps. Differential thermal analysis experiments showed that decomposition occurred in a broad range of temperatures from 400 to 600 °C. It was observed that iron ions acted as catalysts, promoting rapid organic decomposition and phase formation at a lower temperature than in SrTiO3. Moreover, the addition of iron decreased the crystallite size and increased the lattice parameter of the SrTi1−x Fe x O3 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bouma B, Blasse G. Dependence of luminescence of titanates on their crystal structure. J Phys Chem Solids. 1995;56:261–5.

    Article  CAS  Google Scholar 

  2. Lazaro SD, Milanez J, de Figueiredo AT, Longo VM, Mastelaro VR, de Vicente FS, et al. Relation between photoluminescence emission and local order-disorder in the CaTiO3 lattice modifier. Appl Phys Lett. 2007;90:111904.

    Article  Google Scholar 

  3. Sahoo T, Pradhan GK, Rath MK, Pandey B, Verma HC, Nandy S, et al. Characterization and photoluminescence studies on hydrothermally synthesized Mn-doped barium titanate nano powders. Mater Lett. 2007;61:4821–3.

    Article  CAS  Google Scholar 

  4. Choudhury PR, Krupanidhi SB. Constrained ferroelectricity in BaTiO/BaZrO superlattices. Appl Phys Lett. 2008;92:102903.

    Article  Google Scholar 

  5. Luo Y, Szafraniak I, Nagarajan V, Wehrspohn RB, Steinhart M, Wendorff JH, et al. Ferroelectric lead zirconate titanate and barium titanate nanotubes. Integr Ferroelectr. 2003;59:1513–20.

    Article  CAS  Google Scholar 

  6. Moos R, Menesklou W, Schreiner HJ, Härdtl KH. Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens Actuators B. 2000;67:178–83.

    Article  Google Scholar 

  7. Rothschild A, Tuller HL. Gas sensors: new materials and processing approaches. J Eletroceram. 2006;17:1005–12.

    Article  CAS  Google Scholar 

  8. Rothschild A, Menesklou W, Tuller HL, Ivers-Tiffée E. Electronic structure, defect chemistry, and transport properties of SrTi1−xFexO3-y solid solutions. Chem Mater. 2006;18:3651–9.

    Article  CAS  Google Scholar 

  9. Brixner LH. Preparation and properties of the SrTi1−xFexO3−x/2 empty set x/2 system. Mater Res Bull. 1968;3:299–308.

    Article  CAS  Google Scholar 

  10. Meuffels P. Propane gas sensing with high-density SrTi0·6Fe0.4O(3-δ) ceramics evaluated by thermogravimetric analysis. J Eur Ceram Soc. 2007;27:285–90.

    Article  CAS  Google Scholar 

  11. Cushing BL, Kolesnichenko VL, O′Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104:3893–946.

    Article  CAS  Google Scholar 

  12. Mesquita A, Bernardi MIB, Maia LJQ, Mastelaro VR. Synthesis and characterization of Pb1–xLaxTiO3 nanocrystalline powders. J Therm Anal Calorim. 2007;87:747–51.

    Article  CAS  Google Scholar 

  13. da Silva RS, Bernardi MIB, Hernandes AC. Synthesis of non-agglomerated Ba0.77Ca0.23TiO3 nanopowders by a modified polymeric precursor method. J Sol Gel Sci Technol. 2007;42:173–9.

    Article  Google Scholar 

  14. Camargo ER, Longo E, Leite ER, Kakihana M. Qualitative measurement of residual carbon in wet-chemically synthesized powders. Ceram Int. 2004;30:2235–9.

    Article  CAS  Google Scholar 

  15. de Souza MAF, Candeia RA, Souza SC, Chaves AC, Lima SJG, Longo E, et al. Synthesis and characterization of Sr1−xMgxTiO3 obtained by the polymeric precursor method. Mater Lett. 2005;59:549–53.

    Article  Google Scholar 

  16. Mao C, Dong X, Seng T, Wang G, Chen S. Formation and control of mechanism for the preparation of ultra-fine barium strontium titanate powders by the citrate precursor method. Mater Res Bull. 2007;42:1602–10.

    Article  CAS  Google Scholar 

  17. Kakihana M, Okubo T, Arima M, Nakamura Y, Yashima M, Yoshimura M. Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures: implication for formation of Sr-Ti heterometallic citric acid complex. J Sol Gel Sci Technol. 1998;12:95–109.

    Article  CAS  Google Scholar 

  18. Silva MRS, Soledade LEB, Lima SJG, Longo E, Souza AG, Santos IMG. Influence of processing conditions on the thermal decomposition of SrTiO3 precursors. J Therm Anal Calorim. 2007;87:731–5.

    Article  CAS  Google Scholar 

  19. Wang X, Gao LS, Zheng HG. Fabrication and electrochemical properties of alpha-Fe2O3 nanoparticles. J Cryst Growth. 2004;269:489–92.

    Article  CAS  Google Scholar 

  20. Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials. USA: Wiley; 1954. p. 410.

    Google Scholar 

  21. Vračar M, Kuzmin A, Merkle R, Purans J, Kotomin EA, Maier J, et al. Jahn-Teller distortion around Fe4+ Sr(FexTi1−x)O3-δ from X-ray absorption spectroscopy, X-ray diffraction, and vibrational spectroscopy. Phys Rev B. 2007;76:174107.

    Article  Google Scholar 

  22. Leite ER, Varela JA, Longo E, Paskocimas CA. Influence of polymerization on the synthesis of SrTiO3. Part II. Particle and agglomerate morphologies. Ceram Int. 1995;21:153–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. Elson Longo for the use of the FE-SEM facility. We also gratefully acknowledge the Brazilian financing agencies FAPESP and CNPq for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Mastelaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, L.F., Bernardi, M.I.B., Maia, L.J.Q. et al. Synthesis and thermal decomposition of SrTi1−x Fe x O3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method. J Therm Anal Calorim 97, 173–177 (2009). https://doi.org/10.1007/s10973-009-0241-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0241-y

Keywords

Navigation