Skip to main content
Log in

Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A BET thermodynamic model and its recently modified version were applied to predict the phase diagrams of the systems NH4NO3–LiNO3–H2O and NaNO3–LiNO3–Mg(NO3)2–H2O, in which two eutectic points were found with melting point at temperatures between 15 °C and 25 °C. Simple experiments were designed to measure the exothermal and endothermal behavior of the predicted phase change materials. The experimental results showed that the theoretically predicted materials possess excellent exothermal and endothermal behavior at room temperatures. Besides, the fusion and solidification heats of the predicted phase change materials were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hasnain SM. Review on sustainable thermal energy storage technologies part I: heat storage materials and techniques. Energy Convers Manage. 1998;39:1127–38.

    Article  CAS  Google Scholar 

  2. Voigt W, Zeng D. Solid-liquid equilibria in mixtures of molten salt hyrates for the design of heat storage materials. Pure Appl Chem. 2002;74:1909–20.

    Article  CAS  Google Scholar 

  3. Nagano K, Mochida T, Takeda S, Domanski R, Rebow M. Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling system. Appl Therm Eng. 2003;23:229–41.

    Article  CAS  Google Scholar 

  4. Nagano K, Ogawa K, Mochida T, Hayashi K, Ogoshi H. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Appl Therm Eng. 2004;24:209–20.

    Article  CAS  Google Scholar 

  5. Nagano K, Ogawa K, Mochida T, Hayashi K, Ogoshi H. Performance of heat charge/discharge of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture to a single vertical tube for a latent heat storage system. Appl Therm Eng. 2004;24:221–32.

    Article  CAS  Google Scholar 

  6. Stokes RH, Robinson RA. Ionic hydration and activity in electrolyte solutions. J Amer Chem Soc. 1948;70:1870–8.

    Article  CAS  Google Scholar 

  7. Ally MR, Braunstein J. Statistical mechanics of multilayer adsorption: electrolyte and water activities in concentrated solutions. J Chem Thermodyn. 1998;30:49–58.

    Article  CAS  Google Scholar 

  8. Voigt W. Calculation of salt activities in molten salt hydrates applying the modified BET equation (I): binary system. Monatsh Chem. 1993;124:839–48.

    Article  CAS  Google Scholar 

  9. Zeng D, Voigt W. Phase diagram calculation of molten hydrates using the modified BET equation. Calphad. 2003;27:243–51.

    Article  CAS  Google Scholar 

  10. Zeng D, Liu H, Chen Q. Simulation and prediction of solubility phase diagram for the separation of MgCl2 from LiCl brine using HCl as a salting-out agent. Hydrometallurgy. 2007;89:21–31.

    Article  CAS  Google Scholar 

  11. Zeng D, Ming J, Voigt W. Thermodynamic study of the system LiCl–LiNO3–H2O. J Chem Thermodyn. 2008;40:232–9.

    Article  CAS  Google Scholar 

  12. Zeng D, Xu W, Voigt W, Yin X. Thermodynamic study of the system LiCl–CaCl2–H2O. J Chem Thermodyn. 2008;41:1157–65.

    Article  Google Scholar 

  13. Rains WO, Cownce RM. Liquidus curves of NH4NO3(aq) calculated from the modified adsorption isotherm model for aqueous electrolytes. Sep Sci Technol. 2006;41:2629–34.

    Article  CAS  Google Scholar 

  14. Ally MR. Liquidus curve of NaNO3(aq) calculated from the modified adsorption isotherm model for aqueous electrolytes. Monatsh Chem. 2000;131:341–4.

    Article  CAS  Google Scholar 

  15. Linke WF, Seidell A. Solubilities of inorganic and metal organic compounds. 4th ed. Washington: American Chemical Society; 1965. p. II423. (p. II511, p. II709).

  16. Campbell AN. The system: LiNO3–NH4NO3 and LiNO3–NH4NO3–H2O. J Amer Chem Soc. 1942;64:2680–4.

    Article  CAS  Google Scholar 

  17. Campbell AN, Bailey RA. The system lithium nitrate–ethanol–water and its component binary systems. Can J Chem. 1958;36:518–36.

    Article  CAS  Google Scholar 

  18. Andronova NP. Solium nitrate–lithium nitrate–water system at 50 deg. Uch Zap Yarosl Gos Ped Inst. 1972;103:50–1.

    Google Scholar 

  19. Chernykh LV, Bulgakova TN, Skripkin MYu. Thermodynamic study of MgX2–LiX–H2O system (X = Br, NO3, ClO4) at 0 and 50 °C. Zh Prikl Khim. 1998;71:1425–30.

    CAS  Google Scholar 

  20. Zbranek V, Eysseltova J. Study of the ternary systems M(II) (NO3)2–LiNO3–H2O (M(II) = Mg, Ca, Sr, Ba) at 25 °C. Monatsh Chem. 2001;132:1463–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ministry of Science and Technology, PR China, under contract number 2006AA05Z212 and 2006CB708640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Zeng, D., Yin, X. et al. Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents. J Therm Anal Calorim 100, 685–693 (2010). https://doi.org/10.1007/s10973-009-0206-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0206-1

Keywords

Navigation