Skip to main content
Log in

The study of the changes in the thermal properties of Labeo rohita bones due to arsenic exposure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper presents the changes in the thermal properties of control, arsenic exposed and DMSA treated Labeo rohita bones by using thermo analytical techniques. The result shows that the mass loss due to the thermal decomposition occurs in three distinct steps due to loss of water, organic and inorganic materials. The arsenic exposed bones present a different thermal behaviour compared to the control bones. The residue masses are increased due to arsenic exposure, while the DMSA treatment reduces the residue mass level. These thermal characteristics can be used as a qualitative method to check the metal accumulation in samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. US EPA. National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring from the environmental protection agency; final rule. Fed Reg. 2001;66:6976–7066.

    Google Scholar 

  2. Duker AA, Carranza EJM, Hale M. Arsenic geochemistry and health. Environ Int. 2005;31:631–41.

    Article  CAS  Google Scholar 

  3. Azcue JM, Dixon DG. Effects of past mining activities on the arsenic concentration in fish from Moira Lake, Ontario. J Great Lakes Res. 1994;20:717–24

    Article  CAS  Google Scholar 

  4. Kaise T, Mitsuo O, Takao N, Kazuhisa S, Teruaki S, Chiyo M, et al. Biomethylation of arsenic in an arsenic rich fresh-water environment. Appl Organ Chem. 1997;11:297–304.

    Article  CAS  Google Scholar 

  5. Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS. Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin. Idaho. Arch Environ Contam Toxicol. 1998;34:119–27.

    Article  CAS  Google Scholar 

  6. Carvalho ML, Santiago S, Nunes ML. Assessment of the essential element and heavy metal content of edible fish muscle. Anal Bioanal Chem. 2005;382:426–32.

    Article  CAS  Google Scholar 

  7. Gül S, Belge-Kurutas E, Yildiz E, Sahan A, Doran F. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinídae) living in Seyhan Dan Lake, Turkey. Environ Int. 2004;30:605–9.

    Article  CAS  Google Scholar 

  8. Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Korsch MJ, Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997;130:51–62.

    Article  CAS  Google Scholar 

  9. Kosugi H, Hanihara K, Suzuki T, Himeno S, Kawabe T, Hongo T, et al. Elemental composition of ancient Japanese bones. Sci Total Environ. 1986;52:93–107.

    Article  CAS  Google Scholar 

  10. Englert N, Krause C, Thron HL, Wagner M. Studies on lead exposure of selected population groups in Berlin West Germany. Trace Elem Med. 1987;4:112–6.

    CAS  Google Scholar 

  11. Van de Vyver FL, D’Haese PC, Visser WJ, Elseviers MM, Knippenberg LJ, et al. Bone lead in dialysis patients. Kidney Int. 1988;33:601–7.

    Article  Google Scholar 

  12. Aposhian HV, Aposhian MM. meso-2, 3-Dimercaptosuccinic acid: chemical, pharmacological and toxicological properties of an orally effective metal chelating-agent. Annu Rev Pharmacol Toxicol. 1990;30:279–306.

    Article  CAS  Google Scholar 

  13. Anderson HL. Biology of disease: mechanism of mineral formation in bone. Lab Invest. 1989;60:320–30.

    CAS  Google Scholar 

  14. Utech M, Vuono D, De Luca P, Nastro A. Correlation of physical-chemical properties of healthy and pathologic human bones. J Therm Anal Calorim. 2005;80:435–8.

    Article  CAS  Google Scholar 

  15. Prabakaran K, Rajeswari S. Development of hydroxyapatite from natural fish bone through heat treatment. Trends Biomater Artif Organs. 2006;20:20–3.

    Google Scholar 

  16. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes S. TG-MS characterization of pig bone in an inert atmosphere. J Therm Anal Calorim. 2007;88:405–9.

    Article  CAS  Google Scholar 

  17. Sohar G, Pallagi E, Szabo-Revesz P, Toth K. New thermogravimetric protocol for the investigation of normal and damaged human hyaline cartilage. J Therm Anal Calorim. 2007;89:853–6.

    Article  CAS  Google Scholar 

  18. Fantner GE, Birkedal H, Kindt JH, Hassenkam T, Weaver JC, Cutroni JA, et al. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone. 2004;35:1013–22.

    Article  CAS  Google Scholar 

  19. Okamoto Y, Hidaka S, Yamada Y, Ouchi K, Miyazaki K, Liu SY. Thermal analysis of bones from ovariectomized rats. J Biomed Mater Res. 1998;41:221–6.

    Article  CAS  Google Scholar 

  20. Mkukuma LD, Skakle JMS, Gibson IR, Imrie CT, Aspden RM, Hukins DWL. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and fourier transform infrared spectroscopy. Calcif Tissue Int. 2004;75:321–8.

    Article  CAS  Google Scholar 

  21. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.

    Article  CAS  Google Scholar 

  22. Ooi CY, Hamdi M, Ramesh S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int. 2007;33:1171–7.

    Article  CAS  Google Scholar 

  23. Than P, Kereskai L. Thermal analysis of the osteoarthritic human hyaline cartilage. J Therm Anal Calorim. 2005;82:213–6.

    Article  CAS  Google Scholar 

  24. Than P, Halmai V, Kereskai L, Gazso I. Thermal analysis of the cruciate ligaments of the human knee. J Therm Anal Calorim. 2005;81:307–10.

    Article  CAS  Google Scholar 

  25. Nielsen-Marsh CM, Hedges REM, Mann T, Collins MJ. A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim Acta. 2000;365:129–39.

    Article  CAS  Google Scholar 

  26. Pedlar RM, Ptashynski MD, Wautier KG, Evans RE, Baron CL, Klaverkamp JF. The accumulation, distribution and toxicological effects of dietary arsenic exposure in lake white (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comp Biochem Physiol C 2002;131:73–91.

    CAS  Google Scholar 

  27. Palaniappan PLRM, Vijayasundaram V. The effect of Arsenic exposure on the biochemical and mineral contents of Labeo rohita bones: an FT-IR study. Infrared Phys Technol. 2009;52:32–6.

    Article  CAS  Google Scholar 

  28. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose–effect experiments. J Pharmacol Exp Ther. 1949;96:99–130.

    CAS  Google Scholar 

  29. Eaton AE, Lenore S, Clesceri LS, Rice EW, Greenberg AE, editors. Standard methods for the examination of water and wastewater. 21st ed., Centennial Edition. Washington, DC: APHA, AWWA, WEF; 2005.

  30. Odriozola C, Martinez-Blanes JM. Estimate of firing temperatures through bone-based chalcolithic decorated pottery. J Therm Anal Calorim. 2007;87:135–41.

    Article  CAS  Google Scholar 

  31. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes SL. Tg-Ms analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90.

    Article  CAS  Google Scholar 

  32. Mothé CG, Mothé Filho HF, Lima RJC. Thermal study of the fossilization processes of the extinct fishes in Araripe Geopark. J Therm Anal Calorim. 2008;93:101–4.

    Article  CAS  Google Scholar 

  33. Rincón JMa, Romero M, Hidalgo A, Liso MaJ. Thermal behaviour and characterization of an iron aluminum arsenate mineral Mansfieldite-Scorodite series. J Therm Anal Calorim. 2004;76:903–11.

    Article  Google Scholar 

  34. Szabo I, Bognar G, Kereskai L, Szasz K, Lorinczy D. Differential scanning calorimetric and histological examinations of the long head of the biceps in cadavers. J Therm Anal Calorim. 2007;88:343–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. AN. Kannappan, Professor and Head, Department of Physics, Annamalai University for providing all necessary facilities to carry out the present work. The authors are grateful to the Director, Central Electro Chemical Research Institute (CECRI), Karaikudi, for providing the necessary facilities to carry out Thermo gravimetric analysis successfully. We also thank the anonymous referees, who significantly contributed to improving the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PL. RM. Palaniappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayasundaram, V., Ramasamy, V. & Palaniappan, P.R. The study of the changes in the thermal properties of Labeo rohita bones due to arsenic exposure. J Therm Anal Calorim 98, 183–188 (2009). https://doi.org/10.1007/s10973-009-0147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0147-8

Keywords

Navigation