Skip to main content
Log in

Three-parametric equation in evaluation of thermal dissociation of reference compound

  • Regular Papers
  • Kinetics
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Further considerations concerning thermal decomposition of reference material — CaCO3, described by three-parametric equation in version (3), have been presented. It was established that in linear relationship between coefficients of Eq. (3) a 2 is the argument of a 1, which reaches minimal value of thermodynamic character (δH/vR) when a 2=0 (equilibrium relationship). During thermal decomposition connection between system atmosphere — rich in CO2 or vacuum, caused by fast evacuation of gaseous products — and activation energy value, as well as maximal temperature of reaction process. Conditions of this kind may be explained by Zawadzki-Bretsznajder law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Šesták, Heat, Thermal Analysis and Society, Nucleus HK, Hradec Králové, Czech Republic 2004.

  2. J. Šesták, V. Šatava and W. W. Wendlandt, Thermochim. Acta, 7 (1973) 447.

    Article  Google Scholar 

  3. J. Šesták, Mĕřerení termofyzikálních vlastností pevných látek, Academia Praha 1982, p. 188.

  4. P. Holba and J. Šesták, Z. Phys. Chem., Neue Folge, 80 (1972) 1.

    CAS  Google Scholar 

  5. A. Mianowski, J. Therm. Anal. Cal., DOI: 10.1007/s10973-008-9558-1, 2009.

  6. A. Mianowski, J. Therm. Anal. Cal., 59 (2000) 747.

    Article  CAS  Google Scholar 

  7. A. Mianowski, J. Therm. Anal. Cal., 63 (2001) 765.

    Article  CAS  Google Scholar 

  8. M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O. Desseyn, C.-R. Li, Tong B. Tang, B. Roduit, J. Málek and T. Mitsuhashi, Thermochim. Acta, 355 (2000) 125.

    Article  CAS  Google Scholar 

  9. M. Maciejewski, Thermochim. Acta, 355 (2000) 145.

    Article  CAS  Google Scholar 

  10. A. K. Burnham, Thermochim. Acta, 355 (2000) 165.

    Article  CAS  Google Scholar 

  11. B. Roduit, Thermochim. Acta, 355 (2000) 171.

    Article  CAS  Google Scholar 

  12. A. Mianowski, J. Therm. Anal. Cal., 60 (2000) 79.

    Article  CAS  Google Scholar 

  13. J. Szarawara and Cz. Kozik, Chemia Stosowana, 179 (1973) 279 (in Polish).

    Google Scholar 

  14. J. Szarawara and Cz. Kozik, Chemia Stosowana, 17 (1973) 295 (in Polish).

    CAS  Google Scholar 

  15. J. Szarawara and Cz. Kozik, Chemia Stosowana, 20 (1976) 45 (in Polish).

    CAS  Google Scholar 

  16. A. Mianowski and T. Radko, Thermochim. Acta, 247 (1994) 389.

    Article  CAS  Google Scholar 

  17. A. Mianowski and T. Radko, Polish J. Appl. Chem., 38 (1995) 395.

    Google Scholar 

  18. A. Ortega, Thermochim. Acta, 276 (1996) 189.

    Article  CAS  Google Scholar 

  19. A. Khawam and D. R. Flanagan, J. Pharm. Sci., 95 (2006) 472.

    Article  CAS  Google Scholar 

  20. A. Mianowski, Laboratorium, 3 (2008) 24 (in Polish).

    Google Scholar 

  21. J. Czarnecki and J. Šesták, J. Therm. Anal. Cal., 60 (2000) 759.

    Article  CAS  Google Scholar 

  22. J. Zawadzki and S. Bretsznajder, Z. Elektrochem., 41 (1935) 215.

    CAS  Google Scholar 

  23. M. Maciejewski, Prace Naukowe Politechniki Warszawskiej (Chemia 44), Warsaw 1988 (in Polish).

  24. A. Dahme and H. J. Junker, Brennst. Chem., 36 (1955) 193.

    Google Scholar 

  25. A. Mianowski, Thermochim. Acta, 241 (1994) 213

    Article  CAS  Google Scholar 

  26. A. Mianowski, J. Therm. Anal. Cal., 74 (2003) 953

    Article  CAS  Google Scholar 

  27. A. Mianowski and T. Siudyga, J. Therm. Anal. Cal., 92 (2008) 543.

    Article  CAS  Google Scholar 

  28. P. K. Gallagher and D. W. Johnson Jr., Thermochim. Acta, 6 (1973) 67.

    Article  CAS  Google Scholar 

  29. J. P. Elder and V. B. Reddy, J. Thermal Anal., 31 (1986) 395.

    Article  CAS  Google Scholar 

  30. A. Mianowski and R. Bigda, J. Therm. Anal. Cal., 74 (2003) 423.

    Article  CAS  Google Scholar 

  31. A. Mianowski and T. Siudyga, J. Therm. Anal. Cal., 74 (2003) 623.

    Article  CAS  Google Scholar 

  32. I. Barin, Thermochemical Data of Pure Substances, Vols 1–2, VCH Verlagsgesellschaft, Weinheim 1989.

    Google Scholar 

  33. H. Mauras, Bull. Soc. Chim. de France, 3 (1959) 16

    Google Scholar 

  34. J. Rak, P. Skurski, M. Gutowski and J. Błażejowski, J. Thermal Anal., 43 (1995) 239.

    Article  CAS  Google Scholar 

  35. J. Paulik, F. Paulik and L. Erdey, Anal. Chem. Acta, 34 (1966) 419.

    Article  CAS  Google Scholar 

  36. F. Paulik and J. Paulik, Anal. Chem. Acta, 60 (1972) 127.

    Article  CAS  Google Scholar 

  37. A. V. Nikolaev, V. A. Logvinenko and V. M. Gorbatchev, J. Thermal Anal., 6 (1974) 473.

    Article  CAS  Google Scholar 

  38. J. Zsakó and H. E. Arz, J. Thermal Anal., 6 (1974) 651.

    Article  Google Scholar 

  39. H. S. Ray, J. Thermal Anal., 24 (1982) 35.

    Article  CAS  Google Scholar 

  40. A. I. Lesnikovich and S. V. Levchik, J. Thermal Anal., 30 (1985) 237.

    Article  CAS  Google Scholar 

  41. A. I. Lesnikovich and S. V. Levchik, J. Thermal Anal., 30 (1985) 677

    Article  CAS  Google Scholar 

  42. R. K. Agrawal, J. Thermal Anal., 31 (1986) 73.

    Article  CAS  Google Scholar 

  43. N. Koga, Thermochim. Acta, 244 (1994) 1.

    Article  CAS  Google Scholar 

  44. J. J. Rooney, J. Mol. Catal. A., 133 (1998) 303.

    Article  CAS  Google Scholar 

  45. P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 56 (1999) 835.

    Article  CAS  Google Scholar 

  46. S. Milić, N. Colović, M. Antonijević and F. Gaál, J. Therm. Anal. Cal., 61 (2000) 229.

    Article  Google Scholar 

  47. P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 62 (2000) 227.

    Article  CAS  Google Scholar 

  48. T. Vlase, G. Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 80 (2005) 87.

    Article  CAS  Google Scholar 

  49. M. B. Dantas, A. A. F. Almeida, M. M. Conceição, V. J. Fernandes Jr., I. M. G. Santos, F. C. Silva, L. E. B. Soledade and A. G. Souza, J. Therm. Anal. Cal., 87 (2007) 847.

    Article  CAS  Google Scholar 

  50. C. Păcurariu, R. I. Lazău, I. Lazău and D. Tiţa, J. Therm. Anal. Cal., 88 (2007) 647.

    Article  Google Scholar 

  51. V. Muşat, P. Budrugeac, R. C. C. Monterio, E. Fortunato and E. Segal, J. Therm. Anal. Cal., 89 (2007) 505.

    Article  CAS  Google Scholar 

  52. N. Gabilondo, M. López, J. A. Ramos, J. M. Echeverría and I. Mondragon, J. Therm. Anal. Cal., 90 (2007) 229.

    Article  CAS  Google Scholar 

  53. B. Boonchom, S. Youngme, T. Srithanratana and C. Danvirutai, J. Therm. Anal. Cal., 91 (2008) 511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mianowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mianowski, A., Baraniec, I. Three-parametric equation in evaluation of thermal dissociation of reference compound. J Therm Anal Calorim 96, 179–187 (2009). https://doi.org/10.1007/s10973-008-9559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9559-0

Keywords

Navigation