Skip to main content
Log in

Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The understanding of the thermal stability of zinc carbonates and the relative stability of hydrous carbonates including hydrozincite and hydromagnesite is extremely important to the sequestration process for the removal of atmospheric CO2. The hydration-carbonation or hydration-and-carbonation reaction path in the ZnO-CO2-H2O system at ambient temperature and atmospheric CO2 is of environmental significance from the standpoint of carbon balance and the removal of green house gases from the atmosphere.

The dynamic thermal analysis of hydrozincite shows a 22.1% mass loss at 247°C. The controlled rate thermal analysis (CRTA) pattern of hydrozincite shows dehydration at 38°C, some dehydroxylation at 170°C and dehydroxylation and decarbonation in a long isothermal step at 190°C. The CRTA pattern of smithsonite shows a long isothermal decomposition with loss of CO2 at 226°C. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of zinc carbonate minerals via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. The CRTA technology offers a mechanism for the study of the thermal decomposition and relative stability of minerals such as hydrozincite and smithsonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Anthony, R. A. Bideaux, K. W. Bladh and M. C. Nichols, Handbook of Mineralogy, Mineral Data Publishing, Tiscon, Arizona, USA 2003.

    Google Scholar 

  2. V. C. Farmer, Mineralogical Society Monograph 4: The Infrared Spectra of Minerals, 1974.

  3. M. Bouchard and D. C. Smith, Asian Chem. Lett., 5 (2001) 157.

    CAS  Google Scholar 

  4. M. M. Harding, B. M. Kariuki, R. Cernik and G. Cressey, Acta Crystallogr., Section B: Structural Sci., B50 (1994) 673.

    Article  CAS  Google Scholar 

  5. W. Zabinski, Can. Mineral., 8 (1966) 649.

    CAS  Google Scholar 

  6. S. Ghose, Acta Cryst., 17 (1964) 1051.

    Article  CAS  Google Scholar 

  7. A. K. Alwan and P. A. Williams, Transition Metal Chem. (Dordrecht, Netherlands), 4 (1979) 128.

    Article  CAS  Google Scholar 

  8. P. A. Williams, Oxide Zone Geochemistry, Ellis Horwood Ltd., Chichester, West Sussex, England 1990.

    Google Scholar 

  9. J. L. Jambor, Can. Mineral., 8 (1964) 92.

    CAS  Google Scholar 

  10. F. Zhu, D. Persson and D. Thierry, Corrosion (Houston, TX, United States), 57 (2001) 582.

    Article  CAS  Google Scholar 

  11. R. L. Frost, S. J. Palmer, J. M. Bouzaid and B. J. Reddy, J. Raman Spectrosc., 38 (2007) 68.

    Article  CAS  Google Scholar 

  12. R. L. Frost, D. A. Henry, M. L. Weier and W. Martens, J. Raman Spectrosc., 37 (2006) 722.

    Article  CAS  Google Scholar 

  13. R. L. Frost, A. W. Musumeci, J. T. Kloprogge, M. O. Adebajo and W. N. Martens, J. Raman Spectrosc., 37 (2006) 733.

    Article  CAS  Google Scholar 

  14. R. L. Frost, J. Cejka, M. Weier and W. N. Martens, J. Raman Spectrosc., 37 (2006) 879.

    Article  CAS  Google Scholar 

  15. R. L. Frost, M. L. Weier, J. Cejka and J. T. Kloprogge, J. Raman Spectrosc., 37 (2006) 585.

    Article  CAS  Google Scholar 

  16. R. L. Frost, J. Cejka, M. L. Weier and W. Martens, J. Raman Spectrosc., 37 (2006) 538.

    Article  CAS  Google Scholar 

  17. R. L. Frost, M. L. Weier, B. J. Reddy and J. Cejka, J. Raman Spectrosc., 37 (2006) 816.

    Article  CAS  Google Scholar 

  18. R. L. Frost, M. L. Weier, W. N. Martens, J. T. Kloprogge and J. Kristóf, J. Raman Spectrosc., 36 (2005) 797.

    Article  CAS  Google Scholar 

  19. R. L. Frost, J. Raman Spectrosc., 37 (2006) 910.

    Article  CAS  Google Scholar 

  20. R. L. Frost, R.-A. Wills, M. L. Weier and W. Martens, J. Raman Spectrosc., 36 (2005) 435.

    Article  CAS  Google Scholar 

  21. R. L. Frost, A. W. Musumeci, W. N. Martens, M. O. Adebajo and J. Bouzaid, J. Raman Spectrosc., 36 (2005) 925.

    Article  CAS  Google Scholar 

  22. R. L. Frost and M. L. Weier, J. Therm. Anal. Cal., 75 (2004) 277.

    Article  CAS  Google Scholar 

  23. R. L. Frost, K. Erickson and M. Weier, J. Therm. Anal. Cal., 77 (2004) 851.

    Article  CAS  Google Scholar 

  24. R. L. Frost, S. J. Mills and K. L. Erickson, Thermochim. Acta, 419 (2004) 109.

    Article  CAS  Google Scholar 

  25. R. L. Frost, M. L. Weier and W. Martens, J. Therm. Anal. Cal., 82 (2005) 373.

    Article  CAS  Google Scholar 

  26. R. L. Frost, M. L. Weier, W. Martens and S. Mills, J. Mol. Struct., 752 (2005) 178.

    Article  CAS  Google Scholar 

  27. R. L. Frost, A. W. Musumeci, J. Bouzaid, M. O. Adebajo, W. N. Martens and J. T. Kloprogge, J. Solid State Chem., 178 (2005) 1940.

    Article  CAS  Google Scholar 

  28. J. Bouzaid and R. L. Frost, J. Therm. Anal. Cal., 89 (2007) 133.

    Article  CAS  Google Scholar 

  29. J. M. Bouzaid, R. L. Frost and W. N. Martens, J. Therm. Anal. Cal., 89 (2007) 511.

    Article  CAS  Google Scholar 

  30. J. M. Bouzaid, R. L. Frost, A. W. Musumeci and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 745.

    Article  CAS  Google Scholar 

  31. R. L. Frost, J. M. Bouzaid, A. W. Musumeci, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 437.

    Article  CAS  Google Scholar 

  32. R. L. Frost, J. Kristóf, W. N. Martens, M. L. Weier and E. Horváth, J. Therm. Anal. Cal., 83 (2006) 675.

    Article  CAS  Google Scholar 

  33. R. L. Frost, J. Kristóf, M. L. Weier, W. N. Martens and E. Horváth, J. Therm. Anal. Cal., 79 (2005) 721.

    Article  CAS  Google Scholar 

  34. R. L. Frost, A. W. Musumeci, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 89 (2007) 95.

    Article  CAS  Google Scholar 

  35. R. L. Frost, A. W. Musumeci, J. T. Kloprogge, M. L. Weier, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 86 (2006) 205.

    Article  CAS  Google Scholar 

  36. R. L. Frost, M. L. Weier and W. Martens, J. Therm. Anal. Cal., 82 (2005) 115.

    Article  CAS  Google Scholar 

  37. R. L. Frost, R.-A. Wills, J. T. Kloprogge and W. Martens, J. Therm. Anal. Cal., 84 (2006) 489.

    Article  CAS  Google Scholar 

  38. R. L. Frost, R.-A. Wills, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 83 (2006) 213.

    Article  CAS  Google Scholar 

  39. A. W. Musumeci, G. G. Silva, W. N. Martens, E. R. Waclawik and R. L. Frost, J. Therm. Anal. Cal., 88 (2007) 885.

    Article  CAS  Google Scholar 

  40. Y. Xi, W. Martens, H. He and R. L. Frost, J. Therm. Anal. Cal., 81 (2005) 91.

    Google Scholar 

  41. C. W. Beck, Am. Mineral., 35 (1950) 985.

    CAS  Google Scholar 

  42. L. B. Railsback, Carbonates Evaporites, 14 (1999) 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vágvölgyi, V., Hales, M., Martens, W. et al. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim 92, 911–916 (2008). https://doi.org/10.1007/s10973-007-8846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8846-5

Keywords

Navigation