Skip to main content
Log in

Thermal decomposition of zinc hydroxy-sulfate-hydrate minerals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of three structurally and chemically close compounds: Zn4(OH)6(SO4)·4H2O, NaZn4(OH)6(SO4)Cl·6H2O and CaZn8(OH)12(SO4)2Cl2·9H2O, known as namuwite, gordaite and “Ca-gordaite,” was comparatively studied. The thermal events, the released volatiles and solid residues were studied in the range of 20–1000 °C using TG–DTA-MS and powder XRD analyses. The thermal decomposition process of all three compounds includes successive dehydration, dehydroxylation and evolving of SO2, O2 and Cl. The first stage of dehydration occurs in the low-temperature region by the retention of the layered structure with an undisturbed hydroxide layer and a shrunk interlayer. The release of last interlayer water molecules induces the dehydroxylation of the hydroxide layer. As a result, ZnO and a series of secondary hydroxides and hydroxy-salts: Zn3(OH)2(SO4)2 (in the decomposition of the three compounds), β-Zn(OH)Cl (in the case of both gordaites) and Ca(OH)2 (for Ca-gordaite) were formed. The existence and formation of Zn3(OH)2(SO4)2 for the first time were proved by powder XRD. The decomposition of all secondary hydroxyl-containing compounds during the second stage of the dehydroxylation leads to formation of Zn3O(SO4)2, ZnCl2 and CaSO4 at middle temperature region. In the high-temperature region, the evolving of SO2, O2 and HCl occurred due to the decomposition of the (SO4)-groups and ZnCl2 hydration, respectively. At temperatures up to 1000 °C, ZnO was found to be the main final product of the thermal decomposition of the three minerals. In the case of gordaites, an anhydrite and a Na–Zn–SO4 X-ray amorphous phase were also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burns PC, Roberts AC, Nikischer AJ. The crystal structure of Ca[Zn8(SO4)2(OH)12Cl2](H2O)9, a new phase from slag dumps at Val Varena, Italy. Eur J Miner. 1998;10:923–30.

    Article  CAS  Google Scholar 

  2. Ohnishi M, Kusachi I, Kobayashi S. Osakaite, Zn4 SO4(OH)6·5H2O, a new mineral from the Hirao Mine, Osaka, Japan. Can Mineral. 2007;45:1511–7.

    Article  CAS  Google Scholar 

  3. Chukanov NV, Rastsvetaeva RK, Aksenov SM, Pekov IV, Belakovsky DI, Blass G, Möhn G. Lahnsteinite, Zn4(SO4)(OH)6·3H2O, a new mineral from the Friedrichssegen mine Germany. Proc Russ Mineral Soc. 2013;CXLII(1):39–46 (in Russian).

    Google Scholar 

  4. Odnevall I, Leygraf C. Formation of NaZn4(OH)6SO4·6H2O in a marine atmosphere. Corr Sci. 1993;34:1213–29.

    Article  CAS  Google Scholar 

  5. Odnevall I, Leygraf C. The formation of Zn4Cl2(OH)4SO4·5H2O in an urban and an industrial atmosphere. Corrosion science. 1994;36:1551–67.

    Article  CAS  Google Scholar 

  6. Volovitch P, Allely C, Ogle K. Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg-alloying in Zn–Mg coating on steel. Corros Sci. 2009;51:1251–62.

    Article  CAS  Google Scholar 

  7. Santana JJ, Fernandez-Perez BM, Morales J, Vaconcelos HC, Sonto RM, Gonzalez S. Characterization of the corrosion products formed on zinc in archipelagic subtropical environments. Int J Electrohem Sci. 2012;7:2730–41.

    Google Scholar 

  8. Warinner WD, Controy EH. Production of zinc oxysulfate. US Patent 2602727. 1952.

  9. Wesfall DG, Amirini M, Peterson GA. Water solubility of zinc fertilizer: does it matter? Better Crops. 1999;83(2):18–20.

    Google Scholar 

  10. Waitkins GR, Grawford JB. Basic zinc sulfate pigments. US Patent 3136647. 1964.

  11. Hongo T, Lemur TS, Satokawa S, Yamazaki A. Chromate adsorption and pH buffering capacity of zinc hydroxy salts. Appl Clay Sci. 2010;48:455–9.

    Article  CAS  Google Scholar 

  12. Groat LA. The crystal structure of namuwite, a mineral with Zn in tetrahedral and octahedral coordination, and its relationship to synthetic basic zinc sulfates. Am Mineral. 1996;81:238–43.

    Article  CAS  Google Scholar 

  13. Adiwidjaja G, Frise K, Klaska K-H, Schlüter J. The crystal structure of gordaite NaZn4(SO4)(OH)6Cl·6H2O. Z Kristallogr. 1997;212:704–7.

    CAS  Google Scholar 

  14. Hawthorne FC, Schindler M. Topological enumeration of decorated [Cu2+ϕ2]N sheets in hydroxy-hydrated copper oxysalt minerals. Can Mineral. 2000;38:751–61.

    Article  CAS  Google Scholar 

  15. Ben’yash EY, Belakhova VI, Vershinina FI, Shokarev MM. On the composition of solid state in the systems ZnSO4–ZnO–H2O and ZnSO4–Na2O–H2O. Russ J Inorg Chem. 1981;26:888–93.

    Google Scholar 

  16. Bear IJ, Gray IE, Madsen IC, Newnham IE, Rogers LJ. Structures of basic zinc sulfates 3Zn(OH)2·ZnSO4·mH2O, m = 3 and 5. Acta Crystallogr B. 1986;42:32–9.

    Article  Google Scholar 

  17. Bear IJ, Gray IE, Newnham IE, Rogers LJ. The ZnSO4·3Zn(OH)2·H2O system. I. Phase formation. Aust J Chem. 1987;40:539–56.

    Article  CAS  Google Scholar 

  18. Moezzi A, Cortie MB, McDonagh AM. Zinc hydroxide sulfate and its transformation to crystalline zinc oxide. Dalton Trans. 2013;42:14432–7.

    Article  CAS  Google Scholar 

  19. Liang W, Li W, Chen H, Liu H, Zhu L. Exploring electrodeposited flower-like Zn4(OH)6SO4·4H2O nanosheets as precursor for porous ZnO nanosheets. Electrochim Acta. 2015;156:171–8.

    Article  CAS  Google Scholar 

  20. He P, Gao HD, Wu LB, Jiang ZW, Wang GL, Li XM. Porous ZnO sheets transformed from zinc sulfate hydroxide hydrate and their photoluminescence performance. Acta Phys Chem Shin. 2013;29:874–80.

    CAS  Google Scholar 

  21. Nasdala L, Witzke T, Ullrich B, Brett R. Gordaite [Zn4Na(OH)6(SO4)Cl·6H2O]: second occurrence in the Juan de Fuca Ringe, and new data. Am Mineral. 1988;83:1111–6.

    Article  Google Scholar 

  22. Frost R, Palmer S, Pogson R. Thermal stability of the ‘cave’ mineral ardealite Ca2(HPO4)(SO4)·4H2O. J Therm Anal Calorim. 2012;107(2):549–53.

    Article  CAS  Google Scholar 

  23. Frost R, Palmer S, Pogson R. Thermal stability of crandallite CaAl3(PO4)2(OH)5·(H2O). J Therm Anal Calorim. 2012;107(3):905–9.

    Article  CAS  Google Scholar 

  24. Pasierb P, Gajerski R, Osiadły M, Łącz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3 − δ-based protonic conductors. J Therm Anal Calorim. 2014;117:683–91.

    Article  CAS  Google Scholar 

  25. Chang J, Fang Y. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate(C–S–H) by QXRD and TG/MS. J Therm Anal Calorim. 2015;119:57–62.

    Article  CAS  Google Scholar 

  26. Fleet M, Knipe S. Structure of magnesium hydroxide sulfate (2(MgSO4)·(Mg(OH)2)) and solid solution in magnesium hydroxide sulfate hydrate and caminite. Acta Crystallogr B. 1997;53:358–63.

    Article  Google Scholar 

  27. Garcia-Martinez O, Vila E, Martin de Vidales JL, Rojas RM, Petrov K. On the thermal decomposition of the zinc (II) hydroxide chlorides Zn5(OH)8Cl2·H2O and β-Zn(OH)Cl. J Mater Sci. 1994;29:5429–34.

    Article  CAS  Google Scholar 

  28. Kozawa T, Onda A, Yanagisawa K, Kishi A, Masuda Y. Effect of water vapor on thermal decomposition process of zinc hydroxide and crystal growth of zinc oxide. J Solid State Chem. 2011;184:589–96.

    Article  CAS  Google Scholar 

  29. Srivastava OK, Secco EA. Studies on metal hydroxy compounds. I. Thermal analyses of zinc derivatives ε-Zn(OH)2, Zn5(OH)8C12·H2O, β-ZnOHC1, and ZnOHF. Can J Chem. 1967;45:579–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsveta Staminirova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staminirova, T., Petrova, N. & Kirov, G. Thermal decomposition of zinc hydroxy-sulfate-hydrate minerals. J Therm Anal Calorim 125, 85–96 (2016). https://doi.org/10.1007/s10973-016-5325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5325-x

Keywords

Navigation