Skip to main content
Log in

Melting and thermal decompositions of solids

An appraisal of mechanistic interpretations of thermal processes in crystals

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This analysis of interface phenomena considers the alternative processes that may result from heating a crystal, particularly including thermal decomposition, involving chemical reactions, and melting, involving loss of long-range structural order. Such comparisons are expected to provide insights into the factors that determine and control the different types of thermal changes of solids. The survey also critically reviews some theoretical concepts that are currently used to describe solid-state thermal reactions and which provides relevant background information to models used in a recently proposed theory of melting. Probable reasons for the current lack of progress in characterizing the factors that control chemical changes and mechanisms of thermal reactions in solids are also discussed.

It is concluded that some aspects of the macro properties of reaction interfaces in crystal reactions have been adequately described, including geometric representations of interface advance during nucleation and growth processes. In contrast, relatively very little is known about the detailed (micro) processes occurring within these active, advancing interfacial zones: reactant/product contacts during chemical reactions and crystal/melt contacts during fusion. From the patterns of behaviour distinguished, a correlation scheme, based on relative stabilities of crystal structures and components therein, is proposed, which accounts for the four principal types of thermal changes that occur on heating solids: sublimation, decomposition, crystallographic transformation or melting. Identifications of the reasons for these different consequences of heating are expected to contribute towards increasing our understanding of each of the individual processes mentioned and to advance theory of the thermal chemistry of solids, currently enjoying a prolonged quiescent phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AK Galwey (2005) J. Therm. Anal. Cal. 79 219 Occurrence Handle10.1007/s10973-004-0587-0 Occurrence Handle1:CAS:528:DC%2BD2MXhs1ahtbo%3D

    Article  CAS  Google Scholar 

  2. AK Galwey (2005) J. Therm. Anal. Cal. 82 23 Occurrence Handle10.1007/s10973-005-0888-y Occurrence Handle1:CAS:528:DC%2BD2MXht1KgsbnI

    Article  CAS  Google Scholar 

  3. AK Galwey (2005) J. Therm. Anal. Cal. 82 423 Occurrence Handle10.1007/s10973-005-0913-1 Occurrence Handle1:CAS:528:DC%2BD2MXhtFyis7fK

    Article  CAS  Google Scholar 

  4. A. K. Galwey, J. Therm. Anal. Cal., accepted.

  5. AK Galwey ME Brown et al. (1999) Thermal Decomposition of Ionic Solids Elsevier Amsterdam

    Google Scholar 

  6. BV L’vov AV Novichikhin (1997) Thermochim. Acta 290 239 Occurrence Handle10.1016/S0040-6031(96)03100-0

    Article  Google Scholar 

  7. BV L’vov (2002) Thermochim. Acta 389 199 Occurrence Handle10.1016/S0040-6031(02)00013-8

    Article  Google Scholar 

  8. BV L’vov (2004) Thermochim. Acta 424 183 Occurrence Handle10.1016/j.tca.2004.05.012

    Article  Google Scholar 

  9. BV L’vov (2001) Thermochim. Acta 373 97 Occurrence Handle10.1016/S0040-6031(01)00507-X

    Article  Google Scholar 

  10. AK Galwey (2003) Thermochim. Acta 397 249 Occurrence Handle10.1016/S0040-6031(02)00271-X Occurrence Handle1:CAS:528:DC%2BD3sXltlWjug%3D%3D

    Article  CAS  Google Scholar 

  11. AK Galwey (2003) Thermochim. Acta 399 1 Occurrence Handle10.1016/S0040-6031(02)00465-3 Occurrence Handle1:CAS:528:DC%2BD3sXhvV2gu7c%3D

    Article  CAS  Google Scholar 

  12. AK Galwey (2003) Thermochim. Acta 407 93 Occurrence Handle10.1016/S0040-6031(03)00307-1 Occurrence Handle1:CAS:528:DC%2BD3sXovVegs7s%3D

    Article  CAS  Google Scholar 

  13. AK Galwey (2004) Thermochim. Acta 413 139 Occurrence Handle10.1016/j.tca.2003.10.013 Occurrence Handle1:CAS:528:DC%2BD2cXhsVOntrY%3D

    Article  CAS  Google Scholar 

  14. ME Brown D Dollimore AK Galwey et al. (1980) Comprehensive Chemical Kinetics, Vol. 22 Elsevier Amsterdam

    Google Scholar 

  15. P Franzosini M Sanesi et al. (1983) Molten Salt Techniques, Vol. 1 Plenum New York Chap. 8

    Google Scholar 

  16. AF Wells et al. (1975) Structural Inorganic Chemistry Clarendon Oxford 348

    Google Scholar 

  17. AK Galwey PWM Jacobs (1960) Proc. R. Soc. London 254 455 Occurrence Handle10.1098/rspa.1960.0032 Occurrence Handle1:CAS:528:DyaF3cXht1Cjurw%3D

    Article  CAS  Google Scholar 

  18. J Peric M Vucak R Krstulovic Lj Brecevic D Kralj (1996) Thermochim. Acta 277 175 Occurrence Handle10.1016/0040-6031(95)02748-3 Occurrence Handle1:CAS:528:DyaK28Xjs1anu7k%3D

    Article  CAS  Google Scholar 

  19. PWM Jacobs FC Tompkins et al. (1995) Chemistry of the Solid State Butterworth London Chap. 7

    Google Scholar 

  20. M Polanyi E Wigner (1928) Z. Phys. Chem. Abt. A 139 439 Occurrence Handle1:CAS:528:DyaB1MXhtlGgsg%3D%3D

    CAS  Google Scholar 

  21. RS Bradley (1931) Phil. Mag. 7 290

    Google Scholar 

  22. RS Bradley (1956) J. Phys. Chem. 60 1347 Occurrence Handle10.1021/j150544a002 Occurrence Handle1:CAS:528:DyaG2sXhsFGqsw%3D%3D

    Article  CAS  Google Scholar 

  23. B Topley (1932) Proc. R. Soc. London A136 413

    Google Scholar 

  24. RD Shannon (1964) Trans. Faraday Soc. 60 1902 Occurrence Handle10.1039/tf9646001902 Occurrence Handle1:CAS:528:DyaF2MXht1ClsQ%3D%3D

    Article  CAS  Google Scholar 

  25. P. W. Atkins, Physical Chemistry, 5th Ed., W. H. Freeman, New York, Chap. 25.

  26. AK Galwey (1994) Thermochim. Acta 242 259 Occurrence Handle10.1016/0040-6031(94)85030-5 Occurrence Handle1:CAS:528:DyaK2cXlvVyns7g%3D

    Article  CAS  Google Scholar 

  27. KJ Laidler (1972) J. Chem. Ed. 49 343 Occurrence Handle10.1021/ed049p343 Occurrence Handle1:CAS:528:DyaE38XktFyltb0%3D

    Article  CAS  Google Scholar 

  28. PD Garn (1975) J. Thermal Anal. 7 475 Occurrence Handle10.1007/BF01911956 Occurrence Handle1:CAS:528:DyaE2MXktFKnt7c%3D

    Article  CAS  Google Scholar 

  29. PD Garn (1976) J. Thermal Anal. 10 99 Occurrence Handle10.1007/BF02179195 Occurrence Handle1:CAS:528:DyaE28XlvVarurk%3D

    Article  CAS  Google Scholar 

  30. PD Garn (1978) J. Thermal Anal. 13 581 Occurrence Handle10.1007/BF01912397 Occurrence Handle1:CAS:528:DyaE1cXls12lt74%3D

    Article  CAS  Google Scholar 

  31. PD Garn (1988) Thermochim. Acta 135 71 Occurrence Handle10.1016/0040-6031(88)87368-4 Occurrence Handle1:CAS:528:DyaL1MXmsVentQ%3D%3D

    Article  CAS  Google Scholar 

  32. PD Garn (1990) Thermochim. Acta 160 135 Occurrence Handle10.1016/0040-6031(90)80254-V Occurrence Handle1:CAS:528:DyaK3cXkt12qtbk%3D

    Article  CAS  Google Scholar 

  33. AK Galwey ME Brown (1995) Proc. R. Soc. London A450 501

    Google Scholar 

  34. AK Galwey ME Brown (2002) Thermochim. Acta 386 91 Occurrence Handle10.1016/S0040-6031(01)00769-9 Occurrence Handle1:CAS:528:DC%2BD38XitFeqsLY%3D

    Article  CAS  Google Scholar 

  35. AK Galwey (1977) Adv. Catal. 26 247 Occurrence Handle10.1016/S0360-0564(08)60072-3 Occurrence Handle1:CAS:528:DyaE2sXht1Oqs7g%3D

    Article  CAS  Google Scholar 

  36. AK Galwey M Mortimer (2006) Internat. J. Chem. Kinet. 38 1 Occurrence Handle10.1002/kin.20131

    Article  Google Scholar 

  37. AK Galwey R Spinicci GGT Guarini (1981) Proc. R. Soc. London A378 477

    Google Scholar 

  38. AK Galwey GGT Guarini (1993) Proc. R. Soc. London A441 313

    Google Scholar 

  39. ME Brown et al. (2001) Introduction to Thermal Analysis, 2nd Ed. Kluwer Dordrecht

    Google Scholar 

  40. AK Galwey ME Brown (2000) J. Therm. Anal. Cal. 60 863 Occurrence Handle10.1023/A:1010107724523 Occurrence Handle1:CAS:528:DC%2BD3cXlslCgurw%3D

    Article  CAS  Google Scholar 

  41. JH Flynn (1997) Thermochim. Acta 300 83 Occurrence Handle10.1016/S0040-6031(97)00046-4 Occurrence Handle1:CAS:528:DyaK2sXlslWisrc%3D

    Article  CAS  Google Scholar 

  42. FJ Gotor JM Criado J Malek N Koga (2000) J. Phys. Chem. A 104 10777 Occurrence Handle10.1021/jp0022205 Occurrence Handle1:CAS:528:DC%2BD3cXnsV2lsrk%3D

    Article  CAS  Google Scholar 

  43. S Vyazovkin (2000) Int. Rev. Phys. Chem. 19 45 Occurrence Handle10.1080/014423500229855 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Gitbg%3D

    Article  CAS  Google Scholar 

  44. BV L’vov AV Novichikhin AO Dyakov (1998) Thermochim. Acta 315 169 Occurrence Handle10.1016/S0040-6031(98)00296-2

    Article  Google Scholar 

  45. D Beruto AW Searcy (1974) J. Chem. Soc. Faraday Trans. I 70 2145 Occurrence Handle10.1039/f19747002145 Occurrence Handle1:CAS:528:DyaE2MXhtFKltL8%3D

    Article  CAS  Google Scholar 

  46. BV L’vov (1997) Thermochim. Acta 291 179 Occurrence Handle10.1016/S0040-6031(96)03067-5

    Article  Google Scholar 

  47. BV L’vov (2005) J. Therm. Anal. Cal. 79 151 Occurrence Handle10.1007/s10973-004-0577-2

    Article  Google Scholar 

  48. BV L’vov (2006) J. Therm. Anal. Cal. 83 issue 1

    Google Scholar 

  49. P. W. Atkins, Physical Chemistry, 5th Ed., W. H. Freeman, New York, Fig. 27.5.

  50. AK Galwey DM Jamieson ME Brown (1974) J. Phys. Chem. 78 2664 Occurrence Handle10.1021/j100619a006 Occurrence Handle1:CAS:528:DyaE2MXotVek

    Article  CAS  Google Scholar 

  51. AK Galwey MA Mohamed (1994) Thermochim. Acta 239 211 Occurrence Handle10.1016/0040-6031(94)87068-3 Occurrence Handle1:CAS:528:DyaK2cXlsValu7s%3D

    Article  CAS  Google Scholar 

  52. FH Herbstein M Kapon A Weissman (1991) J. Thermal Anal. 41 303 Occurrence Handle10.1007/BF02549317

    Article  Google Scholar 

  53. AK Galwey ME Brown (1984) J. Chem. Soc. Faraday Trans. I 78 411 Occurrence Handle10.1039/f19827800411

    Article  Google Scholar 

  54. AR West et al. (1984) Solid State Chemistry and its Applications John Wiley Chichester 446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Galwey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galwey, A.K. Melting and thermal decompositions of solids. J Therm Anal Calorim 87, 601–615 (2007). https://doi.org/10.1007/s10973-006-7529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7529-y

Keywords

Navigation