Skip to main content
Log in

CuO nanoparticles for EM wave shielding: spectral characterization

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles were created utilizing the cost-effective sol-gel auto-combustion technique. X-ray diffraction (XRD), Field emission scanning spectroscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR) has been used to investigate the structure, morphology, and Functional group of the nanocomposite. The XRD results reveal that the CuO crystallite size is 24.38 nm, and the space group C2/c has been revealed by spectral analysis. The CuO structure with agglomeration has been confirmed by FESEM images. The material has a coercivity of 155 Oe, saturation magnetizations of 0.068 emu/g, and remanent magnetizations of 0.002 emu/g, respectively. The effectiveness of electromagnetic interference (EMI), shielding (SE), and reflecting (RE) was investigated with trials in the 8.2–12.4 GHz range. CuO had a 97.91% EM wave shielding efficiency with a total shielding effectiveness of 16.81 dB at 8.2 GHz.

Graphical abstract

Highlights

  • Copper oxide was successfully prepared using the sol–gel auto-combustion method.

  • The M–H curve of the CuO sample exhibits hysteresis at the low magnetic field. VSM confirms weak ferromagnetic properties at room temperature.

  • With a matching thickness of 4 mm, CuO has a maximum reflection loss of −15.79 dB at 8.28 GHz.

  • The total shielding effectiveness was found to be 16.81 dB at 8.2 GHz, corresponding to 97.91% absorption, which is suitable for EMI shielding application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhao B, Shao G, Fan B, Zhao W, Zhang R (2015) Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite. Phys Chem Chem Phys 17(8):6044–6052. https://doi.org/10.1039/c4cp05229c

    Article  CAS  Google Scholar 

  2. Zhao B, Shao G, Fan B, Zhao W, Zhang R (2015) Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. Phys Chem Chem Phys 17(4):2531–2539. https://doi.org/10.1039/c4cp05031b

    Article  CAS  Google Scholar 

  3. Chandra Babu Naidu K, RoopasKiran S, Madhuri W (2017) Investigations on transport, impedance and electromagnetic interference shielding properties of microwave processed NiMg ferrites. Mater Res Bull 89:125–138. https://doi.org/10.1016/j.materresbull.2017.01.015

    Article  CAS  Google Scholar 

  4. Chandra Babu Naidu K, Madhuri W (2017) Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties. Mater Chem Phys 187:164–176. https://doi.org/10.1016/j.matchemphys.2016.11.062

    Article  CAS  Google Scholar 

  5. Chandra Babu Naidu K, Roopas Kiran S, Madhuri W (2017) Microwave Processed NiMgZn Ferrites for Electromagnetic Intereference Shielding Applications, IEEE Trans Magn 53:2. https://doi.org/10.1109/TMAG.2016.2625773

  6. Munawar T, Iqbal F, Yasmeen S, Mahmood K, Hussain A (2020) Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram Int 46(2):2421–2437. https://doi.org/10.1016/j.ceramint.2019.09.236

    Article  CAS  Google Scholar 

  7. Lakhane M et al. (2019) Dielectric properties of zeolite based metal oxide nanocomposites. Nano-Struct Nano-Objects 17:248–258. https://doi.org/10.1016/j.nanoso.2019.01.008

    Article  CAS  Google Scholar 

  8. Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS. Synthesis and optical characterization of copper oxide nanoparticles. 1(2):36–40, 2010.

  9. Rakhshani AE (1986) Preparation, characteristics and photovoltaic properties of cuprous oxide-a review. Solid State Electron 29(1):7–17. https://doi.org/10.1016/0038-1101(86)90191-7

    Article  CAS  Google Scholar 

  10. Narsinga Rao G, Yao YD, Chen JW (2009) Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing, J Appl Phys 105:9. https://doi.org/10.1063/1.3120785

  11. Punnoose A, Magnone H, Seehra MS, Bonevich J (2001) Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys Rev B - Condens Matter Mater Phys 64(17):1–8. https://doi.org/10.1103/PhysRevB.64.174420

    Article  CAS  Google Scholar 

  12. Karthik K, Victor Jaya N, Kanagaraj M, Arumugam S (2011) Temperature-dependent magnetic anomalies of CuO nanoparticles. Solid State Commun 151(7):564–568. https://doi.org/10.1016/j.ssc.2011.01.008

    Article  CAS  Google Scholar 

  13. Richardson JT, Yiagas DI, Turk B, Forster K, Twigg MV (1991) Origin of superparamagnetism in nickel oxide. J Appl Phys 70(11):6977–6982. https://doi.org/10.1063/1.349826

    Article  CAS  Google Scholar 

  14. Zeng J, Xu J, Tao P, Hua W (2009) Ferromagnetic and microwave absorption properties of copper oxide-carbon fiber composites. J Alloy Compd 487(1–2):304–308. https://doi.org/10.1016/j.jallcom.2009.07.112

    Article  CAS  Google Scholar 

  15. Zeng J, Fan H, Wang Y, Zhang S, Xue J, Cheng X (2012) Ferromagnetic and microwave absorption properties of copper oxide/cobalt/carbon fiber multilayer film composites. Thin Solid Films 520(15):5053–5059. https://doi.org/10.1016/j.tsf.2012.03.059

    Article  CAS  Google Scholar 

  16. Liu X et al. (2013) Investigation on microwave absorption properties of CuO/Cu 2O-coated Ni nanocapsules as wide-band microwave absorbers. RSC Adv 3(34):14590–14594. https://doi.org/10.1039/c3ra40937f

    Article  CAS  Google Scholar 

  17. Siddiqui H, Parra MR, Qureshi MS, Malik MM, Haque FZ (2018) Studies of structural, optical, and electrical properties associated with defects in sodium-doped copper oxide (CuO/Na) nanostructures. J Mater Sci 53(12):8826–8843. https://doi.org/10.1007/s10853-018-2179-6

    Article  CAS  Google Scholar 

  18. Harshapriya P, Basandrai D, and Kaur P (2023) Structural and optical properties of Yttrium-Silver doped ZnO nanoparticle, Mater. Today Proc., no. xxxx, 1–6. https://doi.org/10.1016/j.matpr.2023.01.235

  19. Keabadile OP, Aremu AO, Elugoke SE, Fayemi OE (2020) Green and traditional synthesis of copper oxide nanoparticles—comparative study. Nanomaterials 10(12):1–19. https://doi.org/10.3390/nano10122502

    Article  CAS  Google Scholar 

  20. Bouazizi N, Bargougui R, Oueslati A, Benslama R (2015) Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv Mater Lett 6(2):158–164. https://doi.org/10.5185/amlett.2015.5656

    Article  CAS  Google Scholar 

  21. Sundar S, Venkatachalam G, Kwon SJ (2018) “Biosynthesis of copper oxide (Cuo) nanowires and their use for the electrochemical sensing of dopamine, Nanomaterials 8:10. https://doi.org/10.3390/nano8100823

  22. Usha V, Kalyanaraman S, Thangavel R, Vettumperumal R (2015) Effect of catalysts on the synthesis of CuO nanoparticles: Structural and optical properties by sol-gel method. Superlattices Microstruct 86:203–210. https://doi.org/10.1016/j.spmi.2015.07.053

    Article  CAS  Google Scholar 

  23. Sawaby A, Selim MS, Marzouk SY, Mostafa MA, Hosny A (2010) Structure, optical and electrochromic properties of NiO thin films. Phys B Condens Matter 405(16):3412–3420. https://doi.org/10.1016/j.physb.2010.05.015

    Article  CAS  Google Scholar 

  24. Yao WT et al. (2005) Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process. J Phys Chem B 109(29):14011–14016. https://doi.org/10.1021/jp0517605

    Article  CAS  Google Scholar 

  25. Marabelli F, Parravicini GB (1994) Evidence of localized states in the optical gap of CuO. Phys B Phys Condens Matter 199–200(C):255–256. https://doi.org/10.1016/0921-4526(94)91802-3

    Article  Google Scholar 

  26. Arun KJ, Batra AK, Krishna A, Bhat K, Aggarwal MD, Joseph Francis PJ (2015) Surfactant Free Hydrothermal Synthesis of Copper Oxide Nanoparticles. Am J Mater Sci 5(3A):36–38. https://doi.org/10.5923/s.materials.201502.06

    Article  Google Scholar 

  27. Xiao HM, Zhu LP, Liu XM, Fu SY (2007) Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method. Solid State Commun 141(8):431–435. https://doi.org/10.1016/j.ssc.2006.12.005

    Article  CAS  Google Scholar 

  28. Serhan M et al. (2019) Total iron measurement in human serum with a smartphone, AIChE Annu. Meet. Conf. Proc., 2019-Nov. https://doi.org/10.1039/x0xx00000x

  29. Rashad MM, Rayan DA, Ramadan AA (2013) Optical and magnetic properties of CuO/CuFe2O4 nanocomposites. J Mater Sci Mater Electron 24(8):2742–2749. https://doi.org/10.1007/s10854-013-1164-8

    Article  CAS  Google Scholar 

  30. Shang D et al. (2009) Magnetic and field emission properties of straw-like CuO nanostructures. Appl Surf Sci 255(7):4093–4096. https://doi.org/10.1016/j.apsusc.2008.10.103

    Article  CAS  Google Scholar 

  31. Deepak PH, Pawandeep B (2023) Structural, magnetic, microwave absorption and electromagnetic properties of Y ‑ Ag ‑ doped bismuth ferrite nanoparticles for commercial applications, Appl Phys A https://doi.org/10.1007/s00339-023-06535-y

  32. Harshapriya P, Kaur P, Basandrai D (2023) Influence of La-Ag substitution on structural, magnetic, optical, and microwave absorption properties of BiFeO 3 multiferroics. Chin J Phys 84(Feb):119–131. https://doi.org/10.1016/j.cjph.2023.03.021

    Article  CAS  Google Scholar 

  33. Wan Y, Cui T, Xiao J, Xiong G, Guo R, Luo H (2016) Engineering carbon fibers with dual coatings of FeCo and CuO towards enhanced microwave absorption properties. J Alloy Compd 687:334–341. https://doi.org/10.1016/j.jallcom.2016.06.147

    Article  CAS  Google Scholar 

  34. Meng X, Wan Y, Li Q, Wang J, Luo H (2011) The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe 3 O 4 films. Appl Surf Sci 257(24):10808–10814. https://doi.org/10.1016/j.apsusc.2011.07.108

    Article  CAS  Google Scholar 

  35. Wang L, He F, Wan Y (2011) Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electroplating. J Alloy Compd 509(14):4726–4730. https://doi.org/10.1016/j.jallcom.2011.01.119

    Article  CAS  Google Scholar 

  36. Zhu J, Wei S, Haldolaarachchige N, Young DP, Guo Z (2011) Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe-silica nanoparticles. J Phys Chem C 115(31):15304–15310. https://doi.org/10.1021/jp2052536

    Article  CAS  Google Scholar 

  37. Iqbal S, Shah J, Kotnala RK, Ahmad S (2019) Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J Alloy Compd 779:487–496. https://doi.org/10.1016/j.jallcom.2018.11.307

    Article  CAS  Google Scholar 

  38. Merizgui T, Hadjadj A, Gaoui B, Sebaey TA, Prakash VRA, Kious M (2022) High Content of Siliconized MWCNTs and Cobalt Nanowire with E-Glass/Kenaf Fibers as Promising Reinforcement for EMI Shielding Material. Silicon 14(2):719–729. https://doi.org/10.1007/s12633-020-00893-5

    Article  CAS  Google Scholar 

  39. Kumar A et al. (2015) EM shielding effectiveness of Pd-CNT-Cu nanocomposite buckypaper. J Mater Chem A 3(26):13986–13993. https://doi.org/10.1039/c4ta05749j

    Article  CAS  Google Scholar 

  40. Bhingardive V, Suwas S, Bose S (2015) New physical insights into the electromagnetic shielding efficiency in PVDF nanocomposites containing multiwall carbon nanotubes and magnetic nanoparticles. RSC Adv 5(97):79463–79472. https://doi.org/10.1039/c5ra13901e

    Article  CAS  Google Scholar 

  41. Kaur T, Kumar S, Narang SB, Srivastava AK (2016) Radiation losses in microwave Ku region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites. J Magn Magn Mater 420:336–342. https://doi.org/10.1016/j.jmmm.2016.07.058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PH: drafting the article, data collection, interpretation and analysis. PK: design and analysis. DB: drafting the article, composition idea and interpretations. All authors reviewed the manuscript.

Data Sharing Declaration

Data will be made available on request.

Corresponding author

Correspondence to Deepak Basandrai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshapriya, P., Kaur, P. & Basandrai, D. CuO nanoparticles for EM wave shielding: spectral characterization. J Sol-Gel Sci Technol 108, 548–558 (2023). https://doi.org/10.1007/s10971-023-06207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06207-6

Keywords

Navigation