Skip to main content
Log in

Optical and magnetic properties of CuO/CuFe2O4 nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuO/c-CuFe2O4 nanocomposites have been synthesized via the oxalate precursor route. Effect of synthesis conditions on the crystal structure, microstructure, magnetic and optical properties of the formed powders was studied. The results indicated that pure CuO nanoparticles were obtained from the oxalate precursor annealed at 600 °C for 2 h. However, substitution of Cu2+ ion by Fe3+ ion (Cu1−X Fe X O, where X = 0, 0.05, 0.1 and 0.2) led to form of CuO/CuFe2O4 nanocomposites. The microstructures of the powders appeared as a monoclinic like shape. Furthermore, the band gap energy of the obtained CuO nanopowders was 1.41 eV and the value was slightly decreased by Fe3+ ion substitution. In addition, the formed CuO particles had weak ferromagnetic characteristics. However, the substitution Cu2+ ion by Fe3+ ion enhanced the magnetic properties of the formed composite as the result of increasing the CuFe2O4 phase formation. Hence, the saturation magnetization was increased from 0.13 to 9.8 emu/g by increasing the Fe3+ ion from 0 to 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.O. Park, K.Y. Rhee, S.J. Park, Appl. Surf. Sci. 256, 6945 (2010)

    Article  CAS  Google Scholar 

  2. X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Sens. Actuators B: Chem. 144, 220 (2010)

    Article  CAS  Google Scholar 

  3. S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158 (2012)

    Article  Google Scholar 

  4. Z. Yang, D. Wang, F. Li, D. Liu, P. Wang, X. Li, H. Yue, S. Peng, D. He, Mater. Lett. 90, 4 (2013)

    Article  CAS  Google Scholar 

  5. S. Rehman, A. Mumtaz, S.K. Hasanain, J. Nanopart. Res. 13, 2479 (2011)

    Google Scholar 

  6. K.L. Liu, S.L. Yuan, H.N. Duan, S.Y. Yin, Z.M. Tian, X.F. Zheng, S.X. Huo, C.H. Wang, Mater. Lett. 64, 192 (2010)

    Article  CAS  Google Scholar 

  7. M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Adv. Powder Technol. 23, 315 (2012)

    Article  CAS  Google Scholar 

  8. A. Chapelle, M.H. Yaacob, I. Pasquet, L. Presmanes, A. Barnabé, Ph. Tailhades, J. Du Plessis, K.K. Zadeh, Sens. Actuators B: Chem. 153, 117 (2011)

    Article  CAS  Google Scholar 

  9. M. Srivastava, A.K. Ojha, S. Chaubey, J. Singh, J. Solid State Chem. 183, 2669 (2010)

    Article  CAS  Google Scholar 

  10. S.J. Stewart, G.F. Goya, G. Punte, R.C. Mercader, J. Phy. Chem. Solids. 58, 73 (1997)

    Article  CAS  Google Scholar 

  11. M.M. Rashad, Z.I. Zaki, H. El-Shall, J. Mater. Sci. 44, 2992 (2009)

    Article  CAS  Google Scholar 

  12. R.M. Mohamed, M.M. Rashad, F.A. Haraz, W. Sigmund, J. Magn. Magn. Mater. 322, 2058 (2010)

    Article  CAS  Google Scholar 

  13. M.M. Rashad, J. Mater. Sci.: Mater. Electron. 23, 882 (2012)

    Article  CAS  Google Scholar 

  14. C. Villette, Ph. Tailhades, A. Rousset, C.R. Acad, Sci. Paris 316, 1717 (1993)

    CAS  Google Scholar 

  15. E. Kester, B. Gillot, P. Perriat, Ph. Dufour, C. Villette, Ph. Tailhades, A. Rousset, J. Solid State Chem. 126, 7 (1996)

    Article  CAS  Google Scholar 

  16. B. Gillot, N. Nivoix, E. Kester, O. Nusillard, C. Villette, Ph. Tailhades, A. Rousset, Mater. Chem. Phys. 48, 111 (1997)

    Article  CAS  Google Scholar 

  17. M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn, H.S. Shin, Appl. Surf. Sci. 254, 7477 (2008)

    Article  CAS  Google Scholar 

  18. R.K. Selvan, C.O. Augustin, L.J. Berchmans, R. Saraswathi, Mater. Res. Bull. 38, 41 (2003)

    Article  CAS  Google Scholar 

  19. W. Ponhan, S. Maensiri, Solid State Sci. 11, 479 (2009)

    Article  CAS  Google Scholar 

  20. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, A. Umar, Mater. Lett. 65, 1400 (2011)

    Article  CAS  Google Scholar 

  21. S. N. Karthick, K. Prabakar, A. Subramania, Ji-Tae Hong, J.-J. Jang and H.-J. Kim, Powder. Technol. 205, 36 (2011)

    Google Scholar 

  22. M.M. Rashad, R. Roshdi, K. El-Barawy, A.T. Kandil, Min. Process. Ext. Metall. 120, 156 (2011)

    CAS  Google Scholar 

  23. X. Zhang, D. Zhang, X. Ni, H. Zheng, Solid State Electr. 52, 245 (2008)

    Article  CAS  Google Scholar 

  24. C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Sens. Actuators B: Chem. 158, 299 (2011)

    Article  CAS  Google Scholar 

  25. Y. Li, X.-Y. Yang, J. Rooke, G.V. Tendeloo, B.-L. Su, J. Colloid Interface Sci. 348, 303 (2010)

    Article  CAS  Google Scholar 

  26. S.K. Maji, N. Mukherjee, A. Mondal, B. Adhikary, B. Karmakar, J. Solid State Chem. 183, 1400 (2010)

    Article  Google Scholar 

  27. A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Eng. Conv. Manag. 52, 2800 (2011)

    Article  CAS  Google Scholar 

  28. D. Shang, K. Yu, Y. Zhang, J. Xu, J. Wu, Y. Xu, L. Li, Z. Zhu, Appl. Surf. Sci. 255, 4093 (2009)

    Article  CAS  Google Scholar 

  29. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, J. Alloys Compd. 494, 275 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashad, M.M., Rayan, D.A. & Ramadan, A.A. Optical and magnetic properties of CuO/CuFe2O4 nanocomposites. J Mater Sci: Mater Electron 24, 2742–2749 (2013). https://doi.org/10.1007/s10854-013-1164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1164-8

Keywords

Navigation