Skip to main content
Log in

Selective and rapid detection of acetone using aluminum-doped zno-based sensors

  • Original Paper: Devices based on sol-gel or hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report the preparation and characterization of pure and doped ZnO nanoparticles with 1%, 3%, and 5% aluminum (AZO) using a sol-gel method followed by annealing at 400 °C for 2 h. The structural and morphological properties of the AZO nanoparticles were analyzed using X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) techniques, and Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectrometry (EDS). Optical and specific area properties were investigated by photoluminescence (PL) and N2 physisorption measurements. The results showed that pure and doped AZO nanoparticles crystallize under a hexagonal wurtzite structure and exhibit spherical shapes with nanometric dimensions. TEM and SEM images revealed that the pure and Al-doped ZnO were round nanoparticles with a size smaller that 100 nm. FTIR measurements were conducted to investigate the presence of Al-O stretching vibrations, which served as an indication of aluminum incorporation into the ZnO lattice. The results confirmed the successful integration of aluminum into the ZnO structure. Additionally, XPS measurements were performed to examine the elemental composition of the AZO samples. The presence of Zn 2p peaks in all AZO samples, along with the presence of Al 2p peaks in the Al-doped ZnO structures, provided further evidence for the successful incorporation of Al ions into the ZnO lattice. The PL spectra revealed the presence of various defects (oxygen vacancies, interstitials) in the structure of pure and doped ZnO. Moreover, we fabricated gas sensors by spray-coating the AZO nanoparticles on alumina substrates equipped with interdigitated gold electrodes. The sensors demonstrated linear responses to gas concentration in the range of 5 to 50 ppm, with high sensitivity and good reproducibility, particularly for A1ZO (1% Al-doped ZnO), which exhibited the highest response (~12) at 300 °C under 10 ppm of acetone. Furthermore, A1ZO demonstrated excellent selectivity to acetone compared to other volatile organic compounds (VOCs) gases. Our findings highlight the potential of aluminum-doped ZnO nanoparticles as a promising material for enhancing the sensing properties of acetone gas sensors.

Graphical Abstract

Highlights

  • High sensitivity and reproducibility to acetone gas with 1% Aluminium-doped ZnO.

  • Excellent response to acetone at low temperature (300 °C).

  • Remarkable response to low acetone gas concentration.

  • Good selectivity to acetone over other VOCs.

  • Stable response under varying humidity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iben Nassar K, Rammeh N, Soreto Teixeira S, Graça MPF (2022) Physical Properties, Complex Impedance, and Electrical Conductivity of Double Perovskite LaBa0.5Ag0.5FeMnO6. J Electron Mater 51(1):370–377

    Article  CAS  Google Scholar 

  2. Benamara M, Massoudi J, Dahman H, Dhahri E, El Mir L, Ly A, Lahem D (2020) High response to sub-ppm level of NO2 with 50% RH of ZnO sensor obtained by an auto-combustion method. J Mater Sci Mater Electron 31(17):14249–14260

    Article  CAS  Google Scholar 

  3. Spanel P, Dryahina K, Rejskova A, Chippendale TWE, Smithm D (2011) Breath acetone concentration; biological variability and the influence of diet. Physiol Meas 32:23–31

    Article  Google Scholar 

  4. Anderson JC, Lamm WJE, Hlastala MP (2006) Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. J Appl Physiol 100:880–889

    Article  Google Scholar 

  5. Anderson JC (2015) Measuring breath acetone for monitoring fat loss. Obesity 23:2327–2334

    Article  CAS  Google Scholar 

  6. Wang LL, Chen S, Li W, Wang K, Lou Z, Shen G (2019) Grain‐boundary‐induced drastic sensing performance enhancement of polycrystalline‐microwire printed gas sensors. Adv Mater 31:1804583

    Article  Google Scholar 

  7. Wang WC, Liu FQ, Wang B, Wang Q (2019) Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing. Chin Chem Lett. 30:1261–1265

    Article  CAS  Google Scholar 

  8. Deng L, Bao L, Xu J, Wang D, Wang X (2020) Highly sensitive acetone gas sensor based on ultra-low content bimetallic PtCu modified WO3·H2O hollow sphere. Chin Chem Lett 31(8):2041–2044

    Article  CAS  Google Scholar 

  9. Xu DS, Xu PC, Wang XQ, Chen Y, Yu H, Zheng D, Li X (2020) Pentagram-Shaped Ag@ Pt Core–Shell Nanostructures as High-Performance Catalysts for Formaldehyde Detection. ACS Appl Mater Interf 12:8091–8097

    Article  CAS  Google Scholar 

  10. Benamara M, Zahmouli N, Soreto Teixeira S, Graça MPF, El Mir L, Valente MA (2022) Electrical and Magnetic Studies of Maghemite (γ-Fe2O3) Prepared by the Sol–Gel Route. J Electron Mater 51(5):2698–2707

    Article  CAS  Google Scholar 

  11. Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Electrolytically Exfoliated Graphene-Loaded Flame-Made Ni-Doped SnO2 Composite Film for Acetone Sensing. ACS Appl Mater Interf 7:3077–3092

    Article  CAS  Google Scholar 

  12. Wang L, Teleki A, Pratsinis SE, Gouma PI (2008) Ferroelectric WO3 Nanoparticles for Acetone Selective Detection. Chem Mater 20:4794–4796

    Article  CAS  Google Scholar 

  13. Darvishnejad MH, Firooz AA, Beheshtian J, Khodadadi AA (2016) Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto hexagonal ZnO plates. RSC Adv 6:7838–7845

    Article  CAS  Google Scholar 

  14. Palanisamy S, Ezhil Vilian AT, Chen SM (2012) Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electrochem Sci 7:2153–2163

    Article  CAS  Google Scholar 

  15. Yang K, She GW, Wang H, Ou XM, Zhang XH, Lee CS, Lee ST (2009) ZnO nanotube arrays as biosensors for glucose. J Phys Chem C 113:20169–20172

    Article  CAS  Google Scholar 

  16. Li SM, Zhang LX, Zhu MY, Ji GJ, Zhao LX, Yin J, Bie LJ (2017) Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sens. Actuators B Chem 249:611–623

    Article  CAS  Google Scholar 

  17. Kohl D (1990) The role of noble metals in the chemistry of solid-state gas sensors. Sens Actuators B Chem 1:158–165

    Article  CAS  Google Scholar 

  18. Trivikrama Rao GS, Tarakarama Rao D (1999) Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sens Actuators B Chem 55:166–169

    Article  Google Scholar 

  19. Yang Z, Huang Y, Chen G, Guo Z, Cheng S, Huang S (2009) Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sens. Actuators B Chem 140:549–556

    Article  CAS  Google Scholar 

  20. Iben Nassar K, Slimi M, Rammeh N, Bouhamed A, Njeh A, Kanoun O (2021) Investigation of AC electrical conductivity and dielectric properties of BiBaFeZnO6 double perovskite oxides. J Mater Sci: Mater Electron 32:24050–24057

    Google Scholar 

  21. Yoo R, Güntner AT, Park Y, Rim HJ, Lee HS, Lee W (2019) Sensing of acetone by Al-doped ZnO. Sens Actuators B Chem 283:107–115

    Article  CAS  Google Scholar 

  22. Koo A, Yoo R, Woo SP, Lee HS, Lee W (2019) Enhanced acetone-sensing properties of Pt-decorated Al-doped ZnO nanoparticles. Sens Actuators B Chem 280:109–119

    Article  CAS  Google Scholar 

  23. Rath RJ, Farajikhah S, Oveissi F, Dehghani F, Naficy S (2023) Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv Eng Mater 25(3):2200830

    Article  CAS  Google Scholar 

  24. Epping R, Koch M (2023) On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 28(4):1598

    Article  CAS  Google Scholar 

  25. El Ghoul J, Omri K, El Mir L, Barthou C, Alaya S (2012) Sol-gel synthesis and luminescence properties of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:V composite materials. J Lumin 132:2288

    Article  CAS  Google Scholar 

  26. Rajput P, Vashishtha P, Gupta G, Kamni (2021) A comparative study on structural and optical properties of ZnO nanoparticles prepared by three different synthesis methods. Mater Today Proc 43:3856–3861

    Article  CAS  Google Scholar 

  27. Nguyen HTP, Nguyen TMT, Hoang CN, Le TK, Lund T, Huynh TKX (2020) Characterization and photocatalytic activity of new photocatalysts based on Ag, F-modified ZnO nanoparticles prepared by thermal shock method. Arab J Chem 13:1837–1847

    Article  CAS  Google Scholar 

  28. Anugrahwidya R, Yudasari N, Tahir D (2019) Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid. Mater Sci Semicond Process 105:104712

    Article  Google Scholar 

  29. Taha KK, Modwi A, Elamin M, Arasheed R, Al-Fahad AJ, Albutairi I, Arasheed H, Alfaify M, Anojaidi K, Algethami FK (2019) Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles. J Photochem Photobiol A Chem 390:112263

    Article  Google Scholar 

  30. Benamara M, Zahmouli N, Kallekh A, Bouzidi S, El Mir L, Alamri HR, Valente MA (2023) Study of the magnetic properties of Mg, Gd, and Co doped maghemite (γ-Fe2O3) nanoparticles prepared by sol–gel. J Magn Magn Mater 569:170479

    Article  CAS  Google Scholar 

  31. Ahammed N, Hassan MS, Hassan M (2018) Effects of aluminum (Al) incorporation on structural, optical and thermal properties of ZnO nanoparticles. Mater Sci -Pol 36 3:419–426

    Article  Google Scholar 

  32. Jantrasee S, Moontragoon P, Pinitsoontorn S (2016) Thermoelectric properties of Al-doped ZnO: experiment and simulation. J. Semicond. 37(9):092002

    Article  Google Scholar 

  33. Garcia-Martinez O, Rojas RM, Vila E, De JM (1993) Vidales, Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ion 63:442–449

    Article  Google Scholar 

  34. Vayssilov GN, Aleksandrov HA, Dib E, Costa IM, Nesterenko N, Mintova S (2022) Superacidity and spectral signatures of hydroxyl groups in zeolites. Microporous Mesoporous Mater 343:112144

    Article  CAS  Google Scholar 

  35. Tong Y, Wirth J, Kirsch H, Wolf M, Saalfrank P, Campen RK (2015) Optically probing Al—O and O—H vibrations to characterize water adsorption and surface reconstruction on α-alumina: An experimental and theoretical study. Chem Phys 142(5):054704

    Google Scholar 

  36. Benamara M, Massoudi J, Dahman H, Ly A, Dhahri E, Debliquy M, El Mir L, Lahem D (2021) Study of room temperature NO2 sensing performances of ZnO1-x (x = 0, 0.05, 0.10). App Physics A 128(1):1–18

    Google Scholar 

  37. Bembibre A, Benamara M, Hjiri M, Gómez E, Alamri HR, Dhahri R, Serra A (2022) Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. J Chem Eng 427:132006

    Article  CAS  Google Scholar 

  38. Islam MN, Ghosh TB, Chopra KL, Acharya HN (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280(1-2):20–25

    Article  CAS  Google Scholar 

  39. Benamara M, Teixeira SS, Graça MPF, Valente MA, Jakka SK, Dahman H, Dhahri E, Debliquy M, Lahem D (2021) Study of ZnO room temperature NO2 sensor under illumination prepared by auto-combustion. App Physics A 127(9):1–15

    Article  Google Scholar 

  40. Neher SH, Klein H, Kuhs WF (2018) Determination of crystal size distributions in alumina ceramics by a novel X‐ray diffraction procedure. J Am Ceram Soc 101:1381–1392

    Article  CAS  Google Scholar 

  41. Benamara M, Bouzidi S, Zahmouli N, Teixeira SS, Graça MPF, El Mir L, Valente MA (2022) Electrical transport of Mg-doped maghemite (γ-Fe2O3) nanoparticles. App Physics A 128(7):1–15

    Article  Google Scholar 

  42. Yatskiv R, Grym J (2016) Luminescence properties of hydrothermally grown ZnO nanorods. Superlattices Microstruct 99:214–220

    Article  CAS  Google Scholar 

  43. Chand P, Gaur A, Kumar A, Gaur UK (2015) Effect of NaOH molar concentration on optical and ferroelectric properties of ZnO nanostructures. Appl Surf Sci 356:438–446

    Article  CAS  Google Scholar 

  44. Mannam R, Kumar ES, Priyadarshini DM, Bellarmine F, Gupta ND, Rao MSR (2017) Enhanced photoluminescence and heterojunction characteristics of pulsed laser deposited ZnO nanostructures. Appl Surf Sci 418:335–339

    Article  CAS  Google Scholar 

  45. Soylu M, Coskun M (2018) Controlling the properties of ZnO thin films by varying precursor concentration. J Alloys Compd 741:957–968

    Article  CAS  Google Scholar 

  46. Egashira M, Kanehara N, Shimizu Y, Iwanaga H (1989) Gas-sensing characteristics of Li+-doped and undoped ZnO whiskers. Sens Actuators B Chem 18:349–360

    Article  CAS  Google Scholar 

  47. Shimizu Y, Kai S, Takao Y, Hyodo T, Egashira M (2000) Correlation between methylmercaptan gas-sensing properties and its surface chemistry of SnO2-based sensor materials. Sens Actuators B Chem 65:349–357

    Article  CAS  Google Scholar 

  48. Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Improvement of acetone gas sensing performance of ZnO nanoparticles. Appl Phys Lett 93:26310301–26310303

    Google Scholar 

  49. Hu J, Zou C, Su Y, Li M, Han Y, Kong ES-W, Yang Z, Zhang Y (2018) An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J Mater Chem A 6:17120–17131

    Article  CAS  Google Scholar 

  50. Al-Hardan NH, Abdullah MJ, Aziz AA (2013) Performance of Cr-doped ZnO for acetone sensing. Appl Surf Sci 270:480–485

    Article  CAS  Google Scholar 

  51. An W, Wu X, Zeng XC (2008) Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study. J Phys Chem C 112:5747–5755

    Article  CAS  Google Scholar 

  52. Duy LV, Duy NV, Hung CM, Hoa ND, Dich NQ, (2020) Urea mediated synthesis and acetone-sensing properties of ultrathin porous ZnO nanoplates. Mater Today Commun 101445.

  53. Shimizu Y, Kai S, Takao Y, Hyodo T, Egashira M (2000) Layered mesoporous SnO2 for effective ethanol detection at reduced working temperature. Sens. Actuators B Chem 65:349–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP2/110/44.

Author contributions

MB: Conceptualization, Methodology, Investigation, Formal analysis, Writing – original draft. PR-A: Methodology & Investigation. HD: Methodology, Investigation, Supervision. ME: review & editing. SB: Rietveld refinement. MD: Resources, Methodology. DL: Conceptualization, Writing – review & editing, Supervision, Funding acquisition. VM-F: Formal analysis, Writing – review & editing, Resources. LE: Formal analysis, Review & editing, Resources. JPBS: XPS analyses, Review & editing. LEM: Conceptualization, Methodology, Investigation, Formal analysis, Supervision.

Funding

This work is financially supported by the Tunisian Ministry of Higher Education and Scientific Research (PRF 2019-D4P2), the European Regional Development Fund (ERDF), and the Walloon Region of Belgium through the Interreg V France-Wallonie-Vlaanderen program, under PATHACOV project, and the Micro + project co-funded by the European Regional Development Fund (ERDF) and Wallonia, Belgium (No. 675781-642409). In addition, this work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding Contract UIDB/04650/2020. J.P.B.S. also expresses gratitude to FCT for the contract under the Institutional Call to Scientific Employment Stimulus – 2021 Call (CEECINST/00018/2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Majdi Benamara or José P. B. Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamara, M., Rivero-Antúnez, P., Dahman, H. et al. Selective and rapid detection of acetone using aluminum-doped zno-based sensors. J Sol-Gel Sci Technol 108, 13–27 (2023). https://doi.org/10.1007/s10971-023-06197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06197-5

Keywords

Navigation