Skip to main content
Log in

Synthesis of monodisperse highly nitrogen-rich porous carbon microspheres for CO2 adsorption

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The nitrogen-rich carbon microspheres were prepared by the one-pot hydrothermal synthesis in the presence of resorcinol formaldehyde as the carbon precursor and tetraethylenepentamine (TEPA) as nitrogen precursor as well as the base catalyst, followed by carbonization and activation. Their nitrogen content and microstructure of the nitrogen-rich carbon microspheres could be adjusted by varying the addition of TEPA. The significant enhancement of the microstructure and the nitrogen doping leads to high CO2 adsorption in the activated carbon microspheres. The high nitrogen content of activated sample AMPS-4 was 5.61%, and the large specific surface area and micropore volume were 786.5 m2/g and 0.28 cm3/g, respectively. The activated sample AMCS-4 had the highest CO2 adsorption reaching 5.52 mmol/g and 2.97 mmol/g at 0 and 25 °C, respectively. Compared with EDA-prepared carbon microspheres AMCS-4E, TEPA-prepared carbon microspheres AMCS-4 have stabler chemical adsorption to CO2 due to their higher nitrogen content, which is in corresponds to the higher adsorption heat. The introduction of polyvinylpyrrolidone (PVP) into the system as a stabilizer not only improved the monodispersity of carbon microspheres but also improved the adsorption performance of CO2 by increasing the micropore volume and decreasing the micropore size of the microspheres. The CO2 adsorption of the PVP-assisted prepared sample AMCS-2-P1 reached 4.48 mmol/g and 2.95 mmol/g at 0 °C and 25 °C respectively, which is 0.72 mmol/g and 0.25 mmol/g higher than that of AMCS-2. The carbon microspheres have high CO2 dynamic adsorption capacity, excellent selective adsorption, and good cyclic stability.

Graphical Abstract

Highlights

  • Monodisperse highly N-rich carbon microspheres were prepared by a one-step hydrothermal method.

  • The microspheres have a good monodisperse, improved microstructure, and high N content.

  • The microspheres have high CO2 adsorption capacity, good selective adsorption, and cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sánchez-Laínez J, Zornoza B, Téllez C (2018) Asymmetric polybenzimidazole membranes with thin selective skin layer containing ZIF-8 for H2/CO2 separation at pre-combustion capture conditions. J Membr Sci 563:427–434. https://doi.org/10.1016/j.memsci.2018.06.009

    Article  CAS  Google Scholar 

  2. Wu F, Dellenback PA, Fan M (2019) Highly efficient and stable calcium looping based pre-combustion CO2 capture for high-purity H2 production. Materials Today Energy 13(C). https://doi.org/10.1016/j.mtener.2019.05.013

  3. Gizer SG, Polat O, Ram MK (2022) Recent developments in CO2 capture, utilization, related materials, and challenges. Int J Energy Res 46(12):16241–16263. https://doi.org/10.1002/er.8347

    Article  CAS  Google Scholar 

  4. Alalwan HA, Alminshid AH (2021) CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci Total Environ 788:147850. https://doi.org/10.1016/j.scitotenv.2021.147850

    Article  CAS  Google Scholar 

  5. Czakiert T, Krzywanski J, Zylka A (2022) Chemical looping combustion: a brief overview. Energies 15(4):1563. https://doi.org/10.3390/en15041563

    Article  CAS  Google Scholar 

  6. Yadav S, Mondal SS (2022) A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 308:122057. https://doi.org/10.1016/j.fuel.2021.122057

    Article  CAS  Google Scholar 

  7. Akeeb O, Wang L, Xie W (2022) Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. J Environ Manag 313:115026. https://doi.org/10.1016/j.jenvman.2022.115026

    Article  CAS  Google Scholar 

  8. Norahim N, Yaisanga P, Faungnawakij K (2018) Recent membrane developments for CO2 separation and capture. Chem Eng Technol 41(2):211–223. https://doi.org/10.1002/ceat.201700406

    Article  CAS  Google Scholar 

  9. Ochedi FO, Yu J, Yu H (2021) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 19(1):77–109. https://doi.org/10.1007/s10311-020-01093-8

    Article  CAS  Google Scholar 

  10. Garshasbi V, Jahangiri M, Anbia M (2017) Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl Surf Sci 393:225–233. https://doi.org/10.1016/j.apsusc.2016.09.161

    Article  CAS  Google Scholar 

  11. Kim M, Lee JW, Kim S (2022) CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application. J Clean Prod 337:130597. https://doi.org/10.1016/j.jclepro.2022.130597

    Article  CAS  Google Scholar 

  12. Kwon D, Kim JC, Lee H (2022) Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions. Chem Eng J 427:131461. https://doi.org/10.1016/j.cej.2021.131461

    Article  CAS  Google Scholar 

  13. Kareem FAA, Shariff AM, Ullah S (2018) Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites. J Nat Gas Sci Eng 50:115–127. https://doi.org/10.1016/j.jngse.2017.11.016

    Article  CAS  Google Scholar 

  14. Saisuwansiri P, Worathanakul P (2019) A study of CO2 thermodynamic adsorption and desorption with bi-metal loading on zeolite Y. Mater Today: Proc 17:1458–1465. https://doi.org/10.1016/j.matpr.2019.06.168

    Article  CAS  Google Scholar 

  15. Watabe T, Yogo K (2013) Isotherms and isosteric heats of adsorption for CO2 in amine-functionalized mesoporous silicas. Sep Purif Technol 120:20–23. https://doi.org/10.1016/j.seppur.2013.09.011

    Article  CAS  Google Scholar 

  16. Wang X, Li H, Liu H (2011) AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption. Microporous Mesoporous Mater 142(2-3):564–569. https://doi.org/10.1016/j.micromeso.2010.12.047

    Article  CAS  Google Scholar 

  17. Ma J, Liu Q, Chen D (2014) CO2 adsorption on amine-modified mesoporous silicas. J Porous Mater 21(5):859–867. https://doi.org/10.1007/s10934-014-9835-2

    Article  CAS  Google Scholar 

  18. Sari Yilmaz M (2021) The CO2 adsorption performance of aminosilane-modified mesoporous silicas. J Therm Anal Calorim 146(5):2241–2251. https://doi.org/10.1007/s10973-020-10417-3

    Article  CAS  Google Scholar 

  19. Başaran K, Topçubaşı BU, Davran-Candan T (2021) Theoretical investigation of CO2 adsorption mechanism over amine-functionalized mesoporous silica. J CO2 Utilization 47:101492. https://doi.org/10.1016/j.jcou.2021.101492

    Article  CAS  Google Scholar 

  20. Mat N, Timmiati SN, Teh LP (2022) Recent development in metal oxide-based core–shell material for CO2 capture and utilisation. Applied Nanoscience 1-21. https://doi.org/10.1007/s13204-022-02559-7

  21. Qasem NAA, Ben-Mansour R, Habib MA (2018) An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl Energy 210:317–326. https://doi.org/10.1016/j.apenergy.2017.11.011

    Article  CAS  Google Scholar 

  22. Xu G, Meng Z, Guo X (2019) Molecular simulations on CO2 adsorption and adsorptive separation in fullerene impregnated MOF-177, MOF-180 and MOF-200. Comput Mater Sci 168:58–64. https://doi.org/10.1016/j.commatsci.2019.05.039

    Article  CAS  Google Scholar 

  23. Jun HJ, Yoo DK, Jhung SH (2022) Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. J CO2 Utilization 58:101932. https://doi.org/10.1016/j.jcou.2022.101932

    Article  CAS  Google Scholar 

  24. Wibowo AH, Hasanah YIF, Firdaus M (2018) Efficient CO2 adsorption by Cu (II) acetate and itaconate bioproduct based MOF. J Environ Chem Eng 6(2):2910–2917. https://doi.org/10.1016/j.jece.2018.04.031

    Article  CAS  Google Scholar 

  25. Gaikwad S, Kim Y, Gaikwad R (2021) Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. J Environ Chem Eng 9(4):105523. https://doi.org/10.1016/j.jece.2021.105523

    Article  CAS  Google Scholar 

  26. Khan MR, Harp S, Neumann J (2016) Processing and performance of MOF (metal organic framework)-loaded PAN nanofibrous membrane for CO2 adsorption. J Mater Eng Perform 25(4):1276–1283. https://doi.org/10.1007/s11665-016-1966-y

    Article  CAS  Google Scholar 

  27. Abd AA, Othman MR, Kim J (2021) A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. Environ Sci Pollut Res 28(32):43329–43364. https://doi.org/10.1007/s11356-021-15121-9

    Article  CAS  Google Scholar 

  28. Rehman A, Heo YJ, Nazir G (2021) Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO2 adsorption. Carbon 172:71–82. https://doi.org/10.1016/j.carbon.2020.09.088

    Article  CAS  Google Scholar 

  29. Dassanayake AC, Jaroniec M (2018) Activated polypyrrole-derived carbon spheres for superior CO2 uptake at ambient conditions. Colloids Surf A: Physicochem Eng Asp 549:147–154. https://doi.org/10.1016/j.colsurfa.2018.04.002

    Article  CAS  Google Scholar 

  30. Wang X, Zhou J, Xing W (2017) Resorcinol–formaldehyde resin-based porous carbon spheres with high CO2 capture capacities. J Energy Chem 26(5):1007–1013. https://doi.org/10.1016/j.jechem.2017.07.010

    Article  Google Scholar 

  31. Kim HS, Kim M, Kang MS (2018) Bioinspired synthesis of melaninlike nanoparticles for highly N-doped carbons utilized as enhanced CO2 adsorbents and efficient oxygen reduction catalysts. ACS Sustain Chem Eng 6(2):2324–2333. https://doi.org/10.1021/acssuschemeng.7b03680

    Article  CAS  Google Scholar 

  32. Choma J, Stachurska K, Marszewski M(2016) Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers Adsorption 22(4):581–588. https://doi.org/10.1007/s10450-015-9734-0

    Article  CAS  Google Scholar 

  33. Shi J, Cui H, Xu J (2022) N-doped monodisperse carbon nanospheres with high surface area for highly efficient CO2 capture. Sep Purif Technol 290:120822. https://doi.org/10.1016/j.seppur.2022.120822

    Article  CAS  Google Scholar 

  34. Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mater interfaces 5(5):1849–1855. https://doi.org/10.1021/am400112m

    Article  CAS  Google Scholar 

  35. Wickramaratne NP, Xu J, Wang M (2014) Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem Mater 26(9):2820–2828. https://doi.org/10.1021/cm5001895

    Article  CAS  Google Scholar 

  36. Ghimire PP, Dassanayake AC, Wickramaratne NP (2019) Polyvinyl pyrrolidone-assisted synthesis of size-tunable polymer spheres at elevated temperature and their conversion to nitrogen-containing carbon spheres. J Colloid Interface Sci 549:162–170. https://doi.org/10.1016/j.jcis.2019.04.059

    Article  CAS  Google Scholar 

  37. Wang Z, Sun L, Xu F (2016) Synthesis of N-doped hierarchical carbon spheres for CO2 capture and supercapacitors. RSC Adv 6(2):1422–1427. https://doi.org/10.1039/C5RA20484D

    Article  CAS  Google Scholar 

  38. Wickramaratne NP, Jaroniec M (2014) Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions. Adsorption 20(2):287–293. https://doi.org/10.1007/s10450-013-9572-x

    Article  CAS  Google Scholar 

  39. Liu L, Xie ZH, Deng QF (2017) One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO2 capture. J Mater Chem A 5(1):418–425. https://doi.org/10.1039/C6TA09782K

    Article  CAS  Google Scholar 

  40. Liu L, Deng QF, Hou XX (2012) User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J Mater Chem 22(31):15540–15548. https://doi.org/10.1039/C2JM31441J

    Article  CAS  Google Scholar 

  41. Xu J, Cui H, Shi J (2018) Agar‐derived nitrogen‐doped porous carbon for CO2 adsorption. ChemistrySelect 3(39):10977–10982. https://doi.org/10.1002/slct.201802031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the support of National Natural Science Fund for Innovative Research Groups(Grant No. 51621003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun-Yan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SD., Li, QY., Liu, JG. et al. Synthesis of monodisperse highly nitrogen-rich porous carbon microspheres for CO2 adsorption. J Sol-Gel Sci Technol 108, 98–111 (2023). https://doi.org/10.1007/s10971-023-06165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06165-z

Keywords

Navigation