Skip to main content

Advertisement

Log in

Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g−1, from 0.22 to 1.47 cm3 g−1, and from 0.18 to 0.64 cm3 g−1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g−1 (0 °C, 1 atm) and 1.89 mmol g−1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g−1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol−1 in 0–2.5 mmol g−1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaron, D., Tsouris, C.: Separation of CO2 from flue gas: a review. Sep. Sci. Technol. 40, 321–348 (2005)

    Article  CAS  Google Scholar 

  • Arienillas, A., Rubiera, F., Parra, J.B., Ania, C.O., Pils, J.J.: Surface modification of low cost carbons for their application in the environmental protection. Appl. Surf. Sci. 252, 619–624 (2005)

    Article  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Choma, J., Kalinowska, A., Jedynak, K., Jaroniec, M.: Reproducibility of the synthesis and adsorption properties of ordered mesoporous carbons obtained by the soft-templating method (in Polish). Ochr. Srodowiska 34(3), 3–10 (2012)

    Google Scholar 

  • Choma, J., Osuchowski, L., Jaroniec, M.: Properties and applications of activated carbons obtained from polymeric materials: a review (in Polish). Ochr. Srodowiska 36(2), 3–16 (2014a)

    Google Scholar 

  • Choma, J., Osuchowski, L., Marszewski, M., Jaroniec, M.: Highly microporous polymer-based carbons from CO2 and H2 adsorption. RSC Advances 4, 14795–14802 (2014b)

    Article  CAS  Google Scholar 

  • Choma, J., Stachurska, K., Osuchowski, L., Dziura, A., Jaroniec, M.: Carbon dioxide adsorption on activated carbons obtained from polymeric precursors (in Polish). Ochr. Srodowiska 37(4), 3–8 (2015)

    Google Scholar 

  • De Canck, E., Ascoop, I., Sayari, A., Van Der Voort, P.: Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Phys. Chem. Chem. Phys. 15, 9792–9799 (2013)

    Article  Google Scholar 

  • De Souza, L.K.C., Wickramaratne, N.P., Ello, A.S., Costa, M.J.F., da Costa, C.E.F., Jaroniec, M.: Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon 65, 334–340 (2013)

    Article  Google Scholar 

  • Górka, J., Jaroniec, M.: Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon 49, 154–160 (2011)

    Article  Google Scholar 

  • Gupta, V.K., Nayak, A., Agarwal, S., Tyagi, I.: Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid Interface Sci. 417, 420–430 (2014)

    Article  CAS  Google Scholar 

  • Heydari-Gorji, A., Belmabkhout, Y., Sayari, A.: Polyethyleneimine-impregneted mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27, 12411–12416 (2011)

    Article  CAS  Google Scholar 

  • ICPP, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, 2013

  • Jagiello, J., Olivier, J.P.: 2D-NLDFT Adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013a)

    Article  CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19, 777–783 (2013b)

    Article  CAS  Google Scholar 

  • Jankowska, H., Swiatkowski, A., Choma, J.: Active Carbon. Ellis Horwood Ltd., Chichester (1991)

    Google Scholar 

  • Kruk, M., Jaroniec, M.: Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2001)

    Article  CAS  Google Scholar 

  • Lee, S., Park, S.: Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Colloid Interface Sci. 389, 230–235 (2013)

    Article  CAS  Google Scholar 

  • Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R., Liu, J.: Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012)

    Article  CAS  Google Scholar 

  • Liu, J., Wickramaratne, N.P., Qiao, S.Z., Jaroniec, M.: Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015)

    Article  CAS  Google Scholar 

  • Ludwinowicz, J., Jaroniec, M.: Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82, 297–303 (2015a)

    Article  CAS  Google Scholar 

  • Ludwinowicz, J., Jaroniec, M.: Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94, 673–679 (2015b)

    Article  CAS  Google Scholar 

  • Marsh, H., Rodriguez-Reinoso, F.: Activated Carbon. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Migahead, M.A., Abdul-Raheim, A.M., Atta, A.M., Brostow, W.: Synthesis and evaluation of a new water soluble corrosion inhibitor from recycled poly(ethylene terephthalate). Mater. Chem. Phys. 121, 208–214 (2010)

    Article  Google Scholar 

  • Mishra, S., Goje, A.S., Zope, V.S.: Chemical recycling, kinetics, and thermodynamics of poly(ethylene terephthalate) (PET) waste powder by nitric acid hydrolysis. Polym. React. Eng. 11, 79–99 (2003)

    Article  CAS  Google Scholar 

  • Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48, 145–160 (2002)

    Article  CAS  Google Scholar 

  • Patel, H.A., Karadas, F., Canlier, A., Park, J., Deniz, E., Jung, Y., Atilhan, M., Yavuz, C.T.: High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J. Mater. Chem. 22, 8431–8437 (2012)

    Article  CAS  Google Scholar 

  • Piacentini, R.D., Mujumdar, A.S.: Climate change and drying of agricultural products. Drying Technol. 27, 629–635 (2009)

    Article  CAS  Google Scholar 

  • Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012)

    Article  CAS  Google Scholar 

  • Seredych, M., Jagiello, J., Bandosz, T.J.: Complexity of CO2 adsorption on nanoporous sulfur-doped carbons—is surface chemistry an important factor? Carbon 74, 207–217 (2014)

    Article  CAS  Google Scholar 

  • Su, F., Lu, C.: CO2 capture from gas stream by zeolite 13x using a dual-column temperature/vacuum swing adsorption. Energy Environ. Sci. 5, 9021–9027 (2012)

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. (2015). doi:10.1515/pac-2014-1117

    Google Scholar 

  • Wang, X., Liang, C.D., Dai, S.: Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol–formaldehyde and block copolymers under highly acidic conditions. Langmiur 24, 7500–7505 (2008)

    Article  CAS  Google Scholar 

  • Wickramaratne, N.P., Jaroniec, M.: Activated carbon spheres for CO2 adsorption. ACS Appl. Mater. Interfaces 5, 1849–1855 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.C. acknowledges the National Science Centre (Poland) for support of this research under grant 2013/09/B/ST5/00076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mietek Jaroniec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choma, J., Stachurska, K., Marszewski, M. et al. Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption 22, 581–588 (2016). https://doi.org/10.1007/s10450-015-9734-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9734-0

Keywords

Navigation