Skip to main content
Log in

Bimetallic NiMo-supported Al2O3@TiO2 core-shell microspheres with high hydrodeoxygenation efficiency toward syringol

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, bimetallic NiMo-supported Al2O3@TiO2 core-shell microspheres were developed for the hydrodeoxygenation (HDO) of syringol. First, multi-grams of bimetallic NiMo-supported Al2O3 microspheres containing 20 wt% Ni and 10 wt% Mo were prepared by combining sol-gel and spray pyrolysis (NiMo@Al2O3). Afterwards, a TiO2 anatase shell was decorated onto the surfaces of NiMo@Al2O3 microspheres by hydrolysis of titanium (IV) butoxide with the assistance of an inhibitor. The fabricated NiMo@Al2O3@TiO2 spheres were characterized by XRD, FE-SEM, HR-TEM, N2 adsorption-desorption, XPS, and H2-TPR analyses. The results indicate that Ni and Mo species were incorporated well into the γ-Al2O3 microspheres, which were finely coated by a TiO2 anatase shell layer. HDO experiments showed that the spray pyrolysis-derived bimetallic NiMo-supported catalysts effectively converted syringol with a conversion of ~100% at 270 °C for 3 h, but the hydrocarbon selectivity was still low (~40.3%). By decorating a TiO2 layer shell onto the NiMo@Al2O3 microspheres, enhancing the hydrocarbon selectivity up to ~97%, which included methyl-substituted cyclohexanes (~87.7%), cyclohexane (~2%), and 1,1′-bi(cyclohexane) (~7.3%). The findings suggest that coating the NiMo@Al2O3 microspheres containing high catalyst contents with a hydrophobic shell resulted in a synergetic effect that improved the HDO performance.

Graphical Abstract

Hydrodeoxygenation of syringol over spray pyrolysis-derived catalysts (A) NiMo@Al2O3 and (B) NiMo@Al2O3@TiO2 core-shell microspheres

Highlights

  • NiMo@Al2O3 microspheres were rapidly fabricated by the spray pyrolysis.

  • TiO2 shell layer was decorated over the NiMo@Al2O3 microspheres.

  • NiMo@Al2O3@TiO2 catalyst had 100% HDO conversion toward syringol.

  • NiMo@Al2O3@TiO2 catalyst exhibited a good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data is true and reliable.

References

  1. Chen H, Xia A, Zhu X, Huang Y, Zhu X, Liao Q (2022) Hydrothermal hydrolysis of algal biomass for biofuels production: A review. Bioresour Technol 344:126213. https://doi.org/10.1016/j.biortech.2021.126213

    Article  CAS  Google Scholar 

  2. Su G, Ong HC, Gan YY, Chen W-H, Chong CT, Ok YS (2022) Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective. Bioresour Technol 344:126096. https://doi.org/10.1016/j.biortech.2021.126096

    Article  CAS  Google Scholar 

  3. Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, Chen W-H, Ngamcharussrivichai C (2022) Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts—A critical review. Bioresour Technol 344:126195. https://doi.org/10.1016/j.biortech.2021.126195

    Article  CAS  Google Scholar 

  4. Vo TK, Cho J-S, Kim S-S, Ko J-H, Kim J (2017) Genetically engineered hybrid poplars for the pyrolytic production of bio-oil: Pyrolysis characteristics and kinetics. Energy Convers Manag 153:48–59. https://doi.org/10.1016/j.enconman.2017.10.001

    Article  CAS  Google Scholar 

  5. Vo TK, Kim S-S, Kim J (2022) Pyrolysis characteristics and quantitative kinetic model of microalgae Tetralselmis sp. Korean J Chem Eng. https://doi.org/10.1007/s11814-022-1064-9

  6. Vo TK, Quang DT, Kim J (2022) Spray pyrolysis-derived MoO3@Al2O3@TiO2 core-shell structures with enhanced hydrodeoxygenation performance. Catal Commun. 169:106478. https://doi.org/10.1016/j.catcom.2022.106478

    Article  CAS  Google Scholar 

  7. Martinez-Klimov M, Mäki-Arvela P, Çiftçi A, Kumar N, Eränen K, Peurla M, Hensen EJM, Murzin DY (2022) Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a model compound for renewable jet fuel production. ACS Eng Au. https://doi.org/10.1021/acsengineeringau.2c00015

  8. Shi Y, Xing E, Wu K, Wang J, Yang M, Wu Y (2017) Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal Sci Technol 7(12):2385–2415. https://doi.org/10.1039/C7CY00574A

    Article  CAS  Google Scholar 

  9. Baloch HA, Nizamuddin S, Siddiqui MTH, Riaz S, Jatoi AS, Dumbre DK, Mubarak NM, Srinivasan MP, Griffin GJ (2018) Recent advances in production and upgrading of bio-oil from biomass: A critical overview. J Environ Chem Eng 6(4):5101–5118. https://doi.org/10.1016/j.jece.2018.07.050

    Article  CAS  Google Scholar 

  10. Srifa A, Chaiwat W, Pitakjakpipop P, Anutrasakda W, Faungnawakij K (2019) Chapter 6—Advances in bio-oil production and upgrading technologies. In: Rai M, Ingle AP (eds) Sustainable Bioenergy. Elsevier, pp 167–198. https://doi.org/10.1016/B978-0-12-817654-2.00006-X

  11. Prabhudesai VS, Gurrala L, Vinu R (2022) Catalytic hydrodeoxygenation of lignin-derived oxygenates: catalysis, mechanism, and effect of process conditions. Energy Fuels 36(3):1155–1188. https://doi.org/10.1021/acs.energyfuels.1c02640

    Article  CAS  Google Scholar 

  12. Kim S, Kwon EE, Kim YT, Jung S, Kim HJ, Huber GW, Lee J (2019) Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21(14):3715–3743. https://doi.org/10.1039/C9GC01210A

    Article  CAS  Google Scholar 

  13. Song H, Gong J, Song H-L, Li F, Zhang J, Chen Y-G (2016) Preparation of core-shell structured Ni2P/Al2O3@TiO2 and its hydrodeoxygenation performance for benzofuran. Catal Commun 85:1–4. https://doi.org/10.1016/j.catcom.2016.07.005

    Article  CAS  Google Scholar 

  14. Romero CMC, Thybaut JW, Marin GB (2008) Naphthalene hydrogenation over a NiMo/γ-Al2O3 catalyst: Experimental study and kinetic modelling. Catal Today 130(1):231–242. https://doi.org/10.1016/j.cattod.2007.06.074

    Article  CAS  Google Scholar 

  15. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101(3):239–245. https://doi.org/10.1016/j.apcatb.2010.10.025

    Article  CAS  Google Scholar 

  16. Yun G-N, Ahn S-J, Takagaki A, Kikuchi R, Oyama ST (2017) Hydrodeoxygenation of γ-valerolactone on bimetallic NiMo phosphide catalysts. J Catal 353:141–151. https://doi.org/10.1016/j.jcat.2017.07.006

    Article  CAS  Google Scholar 

  17. Phan D-P, Vo TK, Le VN, Kim J, Lee EY (2020) Spray pyrolysis synthesis of bimetallic NiMo/Al2O3–TiO2 catalyst for hydrodeoxygenation of guaiacol: Effects of bimetallic composition and reduction temperature. J Ind Eng Chem 83:351–358. https://doi.org/10.1016/j.jiec.2019.12.008

    Article  CAS  Google Scholar 

  18. Vo TK, Kim W-S, Kim S-S, Yoo KS, Kim J (2018) Facile synthesis of Mo/Al2O3–TiO2 catalysts using spray pyrolysis and their catalytic activity for hydrodeoxygenation. Energy Convers Manag 158:92–102. https://doi.org/10.1016/j.enconman.2017.12.049

    Article  CAS  Google Scholar 

  19. Zhang Z, Shen C, Sun K, Jia X, Ye J, Liu C-J (2022) Advances in studies of the structural effects of supported Ni catalysts for CO2 hydrogenation: from nanoparticle to single atom catalyst. J Mater Chem A 10(11):5792–5812. https://doi.org/10.1039/D1TA09914K

    Article  CAS  Google Scholar 

  20. López-Cruz C, Guzman J, Cao G, Martínez C, Corma A (2021) Modifying the catalytic properties of hydrotreating NiMo–S phases by changing the electrodonor capacity of the support. Catal Today 382:130–141. https://doi.org/10.1016/j.cattod.2021.08.002

    Article  CAS  Google Scholar 

  21. Mora-Vergara ID, Hernández Moscoso L, Gaigneaux EM, Giraldo SA, Baldovino-Medrano VG (2018) Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catal Today 302:125–135. https://doi.org/10.1016/j.cattod.2017.07.015

    Article  CAS  Google Scholar 

  22. Kaluža L, Kubička D (2017) The comparison of Co, Ni, Mo, CoMo, and NiMo sulfided catalysts in rapeseed oil hydrodeoxygenation. React Kinet Mech Catal 122(1):333–341. https://doi.org/10.1007/s11144-017-1247-2

    Article  CAS  Google Scholar 

  23. Patil RB, House SD, Mantri A, Yang JC, McKone JR (2020) Direct observation of Ni–Mo bimetallic catalyst formation via thermal reduction of nickel molybdate nanorods. ACS Catal 10(18):10390–10398. https://doi.org/10.1021/acscatal.0c02264

    Article  CAS  Google Scholar 

  24. Zhou M, Ye J, Liu P, Xu J, Jiang J (2017) Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts. ACS Sustain Chem Eng 5(10):8824–8835. https://doi.org/10.1021/acssuschemeng.7b01615

    Article  CAS  Google Scholar 

  25. Adilina IB, Rinaldi N, Simanungkalit SP, Aulia F, Oemry F, Stenning GBG, Silverwood IP, Parker SF (2019) Hydrodeoxygenation of Guaiacol as a Bio-oil model compound over pillared clay-supported Nickel–Molybdenum catalysts. J Phys Chem C 123(35):21429–21439. https://doi.org/10.1021/acs.jpcc.9b01890

    Article  CAS  Google Scholar 

  26. Vo TK (2022) Spray pyrolysis synthesis and UV-driven photocatalytic activity of mesoporous Al2O3@TiO2 microspheres. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18865-0

  27. Ly HV, Im K, Go Y, Galiwango E, Kim S-S, Kim J, Choi JH, Woo HC (2016) Spray pyrolysis synthesis of γ-Al2O3 supported metal and metal phosphide catalysts and their activity in the hydrodeoxygenation of a bio-oil model compound. Energy Convers Manag 127:545–553. https://doi.org/10.1016/j.enconman.2016.09.020

    Article  CAS  Google Scholar 

  28. Su D, Zhang X, Wu A, Yan H, Liu Z, Wang L, Tian C, Fu H (2019) CoO-Mo2N hollow heterostructure for high-efficiency electrocatalytic hydrogen evolution reaction. NPG Asia Mater 11(1):78. https://doi.org/10.1038/s41427-019-0177-z

    Article  CAS  Google Scholar 

  29. Ji W, Shen R, Yang R, Yu G, Guo X, Peng L, Ding W (2014) Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J Mater Chem A 2(3):699–704. https://doi.org/10.1039/C3TA13708B

    Article  CAS  Google Scholar 

  30. Vo TK (2022) Mo-modified TiO2 mesoporous microspheres prepared by spray pyrolysis for adsorption-photocatalytic water remediation. J Sol-Gel Sci Technol 103(3):853–864. https://doi.org/10.1007/s10971-022-05902-0

    Article  CAS  Google Scholar 

  31. Shayegan Z, Lee C-S, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem Eng J 334:2408–2439. https://doi.org/10.1016/j.cej.2017.09.153

    Article  CAS  Google Scholar 

  32. Asmadi M, Kawamoto H, Saka S (2011) Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J Anal Appl Pyrolysis 92(1):88–98. https://doi.org/10.1016/j.jaap.2011.04.011

    Article  CAS  Google Scholar 

  33. Feliczak-Guzik A, Szczyglewska P, Jaroniec M, Nowak I (2020) Ruthenium-containing SBA-12 catalysts for anisole hydrodeoxygenation. Catal Today 354:67–76. https://doi.org/10.1016/j.cattod.2020.03.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Industrial University of Ho Chi Minh City. The author also thanks Professor Jinsoo Kim at Chemical Engineering Department for his support.

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.05-2020.32. This work is supported by the Industrial University of Ho Chi Minh City.

Author information

Authors and Affiliations

Authors

Contributions

TKV: Conceptualization, investigation, formal analysis, writing manuscript, visualization, editing & reviewing.

Corresponding author

Correspondence to The Ky Vo.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Not applicable.

Consent to participate

All authors agree to participate in the editing of the paper.

Consent to publish

All authors agree to publish this manuscript in your journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, T.K. Bimetallic NiMo-supported Al2O3@TiO2 core-shell microspheres with high hydrodeoxygenation efficiency toward syringol. J Sol-Gel Sci Technol 105, 804–813 (2023). https://doi.org/10.1007/s10971-023-06068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06068-z

Keywords

Navigation