Skip to main content
Log in

Synthesis and higher catalytic property of the novel bimetallic Ni–Fe/SiO2 microspheres with mesoporous structure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bimetallic catalyst Ni–Fe/SiO2 microspheres were obtained by reducing bimetallic (Ni,Fe2+)3Si2O5(OH)4 microspheres with controllable morphology structure in situ under the hydrogen atmosphere at 650 °C, which are synthesized via one-step self-template method under hydrothermal conditions. The TEM images indicate the formation process of the different morphology and the synthesis conditions of bimetallic Ni–Fe silicate were obtained. Bimetallic catalyst Ni–Fe/SiO2 (reduced) hollow microspheres had the smaller surface area and the bigger pore diameter than that of (Ni,Fe2+)3Si2O5(OH)4 (unreduced) hollow microspheres because the reduction reaction under high temperature may make part pores in nanosheets collapsing and metal particles aggregating easily for the strong magnetism. For synergistic effect of nickel ion and iron ion, the reaction conditions of the chosen catalyst with higher activity were decreased from 140 °C–24 h + 180 °C −12 h for iron silicate hydroxide to 140 °C–12 h. Ni–Fe/SiO2 core-shell microspheres exhibited excellent catalytic activity with a conversion of nitrobenzene reaching 94% within 2 h, which is 82% higher than Fe/SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. R.S. Downing, P.J. Kunkeler, and H.V. Bekkum: Catalytic syntheses of aromatic amines. Catal. Today 37 (2), 121 (1997).

    Article  CAS  Google Scholar 

  2. H.U. Blaser: A golden boost to an old reaction. Chemistry 313 (5785), 312 (2006).

    CAS  Google Scholar 

  3. A. Corma, P. Concepcion, and P. Serna: Cover picture: A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 46 (38), 7404 (2007).

    Article  Google Scholar 

  4. X.C. Meng, H.Y. Cheng, Y. Akiyama, Y.F. Hao, W.B. Qiao, Y.C. Yu, F.Y. Zhao, S.I. Fujita, and M. Arai: Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. J. Catal. 264 (1), 1 (2009).

    Article  CAS  Google Scholar 

  5. V. Holler, D. Wegricht, I. Yuranov, L. Minsker, and A. Renken: Three-phase nitrobenzene hydrogenation over supported glass fiber catalysts: Reaction kinetics study. Chem. Eng. Technol. 23 (3), 251 (2000).

    Article  CAS  Google Scholar 

  6. A. Corma, P. Serna, P. Concepcion, and J. Calvino: Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130 (27), 8748 (2008).

    Article  CAS  Google Scholar 

  7. S. Diao, W. Qian, G. Luo, F. Wei, and Y. Wang: Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor. Appl. Catal., A 286 (1), 30 (2005).

    Article  CAS  Google Scholar 

  8. B. Li and Z. Xu: A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst. J. Am. Chem. Soc. 131 (45), 16380 (2009).

    Article  CAS  Google Scholar 

  9. M.C. Macías Pérez, C. Salinas Martínez de Lecea, and A. Linares Solano: Platinum supported on activated carbon cloths as catalyst for nitrobenzene hydrogenation. Appl. Catal., A 151 (2), 461 (1997).

    Article  Google Scholar 

  10. H.D. Burge, D.J. Collins, and B.H. Davis: Intermediates in the Raney nickel catalyzed hydrogenation of nitrobenzene to aniline. Ind. Eng. Chem. Prod. Res. Dev. 19 (3), 389 (1980).

    Article  CAS  Google Scholar 

  11. H. Li, Q. Zhao, Y. Wan, W. Dai, and M. Qiao: Self-assembly of mesoporous Ni–B amorphous alloy catalysts. J. Catal. 244 (2), 251 (2006).

    Article  CAS  Google Scholar 

  12. S. Lee and Y. Chen: Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials. J. Mol. Catal. A: Chem. 152 (1–2), 213 (2000).

    Article  CAS  Google Scholar 

  13. Y. Zheng, K. Ma, H. Wang, X. Sun, J. Jiang, C. Wang, R. Li, and J. Ma: A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture. Catal. Lett. 124 (3), 268 (2008).

    Article  CAS  Google Scholar 

  14. R. Xu, T. Xie, Y.G. Zhao, and Y. Li: Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology 18 (5), 055602 (2007).

    Article  CAS  Google Scholar 

  15. A.G. Boudjahem, S. Monteverdi, M. Mercy, and M.M. Bettahar: Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J. Catal. 221 (2), 325 (2004).

    Article  CAS  Google Scholar 

  16. J. Relvas, R. Andrade, F.G. Freire, F. Lemos, P. Araujo, M. Pinho, C. Nunes, and F. Ribeiro: Liquid phase hydrogenation of nitrobenzene over an industrial Ni/SiO2 supported catalyst. Catal. Today 133–135, 828 (2008).

    Article  CAS  Google Scholar 

  17. J.H. Wang, Z.L. Yuan, R.F. Nie, Z.Y. Hou, and X.M. Zheng: Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts. Ind. Eng. Chem. Res. 49 (10), 4664 (2010).

    Article  CAS  Google Scholar 

  18. N. Toshima and T. Yonezawa: Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22 (11), 1179 (1998).

    Article  CAS  Google Scholar 

  19. A. Carrero, J.A. Calles, and A.J. Vizcaíno: Effect of Mg and Ca addition on coke deposition over Cu–Ni/SiO2 catalysts for ethanol steam reforming. Chem. Eng. J. 163 (3), 395 (2010).

    Article  CAS  Google Scholar 

  20. Y. Park, T. Kang, Y.S. Cho, P. Kim, J.C. Park, and J. Yi: Finely-dispersed Ni/Cu catalysts supported on mesoporous silica for the hydrodechlorination of chlorinated hydrocarbons. Stud. Surf. Sci. Catal. 146, 637 (2003).

    Article  CAS  Google Scholar 

  21. A.J. Vizcaino, A. Carrero, and J.A. Calles: Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. Int. J. Hydrogen Energy 32 (10–11), 1450 (2007).

    Article  CAS  Google Scholar 

  22. J.R.A. Sietsma, J.D. Meeldijk, M. Versluijs-Helder, A. Broersma, A. Jos van Dillen, P.E. de Jongh, and K.P. de Jong: Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: Impregnation, drying, and thermal treatments. Chem. Mater. 20 (9), 2921 (2008).

    Article  CAS  Google Scholar 

  23. S. Takenaka, H. Ogihara, and K. Otsuka: Structural change of Ni species in Ni/SiO2 catalyst during decomposition of methane. J. Catal. 208 (1), 54 (2002).

    Article  CAS  Google Scholar 

  24. X.M. Fang, S.L. Yao, Z. Qing, and F.Y. Li: Study on silica supported Cu–Cr–Mo nitrobenzene hydrogenation catalysts. Appl. Catal., A 161 (1–2), 129 (1997).

    Article  CAS  Google Scholar 

  25. J.Y. Wang, N.L. Yang, H.J. Tang, Z.H. Dong, Q. Jin, M. Yang, D. Kisailus, H.J. Zhao, Z.Y. Tang, and D. Wang: Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125, 6545 (2013).

    Article  Google Scholar 

  26. Z.Y. Guo, F.L. Du, G.C. Li, and Z.L. Cui: Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core–shell microspheres with tunable chamber structures via a self-template method. Chem. Commun. 25, 2911 (2008).

    Article  CAS  Google Scholar 

  27. D.W. Chen, Z.Y. Guo, T. Sun, and F.L. Du: Controlled synthesis and catalytic properties of mesoporous nickel–silica core–shell microspheres with tunable chamber structures. Mater. Res. Bull. 47, 2344 (2012).

    Article  CAS  Google Scholar 

  28. Q. Rong, L.L. Long, X. Zhang, Y.X. Huang, and H.Q. Yu: Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Appl. Energy 153 (1), 63 (2015).

    Article  CAS  Google Scholar 

  29. F. Alvarez-Ramírez, J.A. Toledo-Antonio, C. Angeles-Chavez, J.H. Guerrero-Abreo, and E. Lopez-Salinas: Complete structural characterization of Ni3Si2O5(OH)4 Nanotubes: Theoretical and experimental comparison. J. Phys. Chem. C 115 (23), 11442 (2011).

    Article  CAS  Google Scholar 

  30. W. Stöber and A. Fink: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26 (1), 62 (1968).

    Article  Google Scholar 

  31. D.A. Palmer and S.E. Drummond: Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution. Geochim. Cosmochim. Acta 50 (1), 813 (1986).

    Article  CAS  Google Scholar 

  32. R.K. Iler: The colloid chemistry of silica and silicates. Soil Sci. 80 (1), 86 (1955).

    Article  Google Scholar 

  33. E.T. Saw, U. Oemar, X.R. Tan, Y. Du, A. Borgna, K. Hidajat, and S. Kawi: Bimetallic Ni–Cu catalyst supported on CeO2 for high-temperature water–gas shift reaction: Methane suppression via enhanced CO adsorption. J. Catal. 314, 32 (2014).

    Article  CAS  Google Scholar 

  34. M. Kasrai and D.S. Urch: Electronic structure of iron(II) and (III) fluorides using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc., Faraday Trans. 2 75, 1522 (1979).

    Article  CAS  Google Scholar 

  35. J.C. Langevoort, I. Sutherland, L.J. Hanekamp, and P. Gellings: On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl. Surf. Sci. 28, 167 (1987).

    Article  CAS  Google Scholar 

  36. K. Xu, J.X. Wang, X.L. Kang, and J.F. Chen: Fabrication of antibacterial monodispersed Ag–SiO2 core–shell nanoparticles with high concentration. Mater. Lett. 63, 31 (2009).

    Article  CAS  Google Scholar 

  37. N. Luo, L. Mao, L. Jiang, J. Zhan, Z. Wu, and D. Wu: Directly ultraviolet photochemical deposition of silver nanoparticles on silica spheres: Preparation and characterization. Mater. Lett. 63, 154 (2009).

    Article  CAS  Google Scholar 

  38. Y.H. Wu, G.X. Chang, Y.B. Zhao, and Y. Zhan: Preparation of hollow nickel silicate nanospheres for separation of His-tagged proteins. Dalton Trans. 43, 779 (2014).

    Article  CAS  Google Scholar 

  39. J. Ashok, P.S. Reddy, G. Raju, M. Subrahmanyam, and A. Venugopal: Catalytic decomposition of methane to hydrogen and carbon nanofibers over Ni–Cu–SiO2 Catalysts. Energy Fuels 23 (1), 5 (2009).

    Article  CAS  Google Scholar 

  40. W.H. Zhang, X. Quan, and Z.Y. Zhang: Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles. J. Environ. Sci. 19 (3), 362 (2007).

    Article  CAS  Google Scholar 

  41. F.Y. Xu, S.B. Deng, J. Xu, W. Zhang, M. Wu, B. Wang, J. Huang, and G. Yu: Highly active and stable Ni–Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ. Sci. Technol. 46 (8), 4576 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (51272115) and A Project of Shandong Province Higher Educational Science and Technology Program (J13LA10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanglin Du.

Supporting Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Du, F. Synthesis and higher catalytic property of the novel bimetallic Ni–Fe/SiO2 microspheres with mesoporous structure. Journal of Materials Research 32, 766–774 (2017). https://doi.org/10.1557/jmr.2016.521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.521

Navigation