Skip to main content
Log in

PVP-assisted Sn-Ti microspheres for the efficient B–V oxidation of cyclohexanone

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

New Sn-Ti microspheres were first successfully synthesized by a PVP-assisted sol-gel method in this paper, and their performance in the B–V oxidation of cyclohexanone was investigated. The XRD, N2 sorption, SEM, Py-IR, UV–Vis, XPS, EDX, Elemental mapping and TEM characterization techniques were utilized to investigate their physical and chemical properties. Based on the proposal possible formation mechanism, in the MTS-x sample synthesis procedure, the introduction of PVP as a stabilizer and dispersant can coordinate the hydrolysis rate of two different precursors resulting in the hindrance of their agglomerations. And the HDA as a precipitation accelerator and morphology control agent can be beneficial to the formation of spheres by increasing the hydrogen-bonding interactions. The MTS-12 as well as the weight percent of tin to titanium species of 12 with specific regular microspheres has the highest cyclohexanone conversion of 97.8% and the highest ε-caprolactone selectivity of 98.2%, which is better than the bulk Sn-TiO2 catalyst even though that the weight percent of tin to titanium species was 18. The catalysts with higher accessible active sites and shorter diffusion channels would provide a valuable theoretic reference for the industrial process of the B–V oxidation of cyclohexanone for the preparation of caprolactone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Strukul, Transition metal catalysis in the baeyer-villiger oxidation of ketones[J]. Angewandte Chemie Int. Ed. 37(9), 1198–1209 (1998)

    Article  Google Scholar 

  2. G.-J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, The Baeyer-villiger reaction: new developments toward greener procedures[J]. Chem. Rev. 104(9), 4105–4123 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. R.A. Michelin, P. Sgarbossa, A. Scarso, G. Strukul, The baeyer-villiger oxidation of ketones: a paradigm for the role of soft lewis acidity in homogeneous catalysis[J]. Coord. Chem. Rev. 254(5–6), 646–660 (2010)

    Article  CAS  Google Scholar 

  4. K. Kaneda, T. Yamashita, Heterogeneous baeyer-villiger oxidation of ketones using m-chloroperbenzoic acid catalyzed by hydrotalcites[J]. Tetrahedr. Lett. 37(26), 4555–4558 (1996)

    Article  CAS  Google Scholar 

  5. B. Schweitzer-Chaput, T. Kurtén, M. Klussmann, Acid-mediated formation of radicals or baeyer-villiger oxidation from criegee adducts[J]. Angewandte Chemie 54(40), 11848–11851 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Z. Zhu, H. Xu, J. Jiang, X. Liu, J. Ding, P. Wu, Postsynthesis of FAU-type stannosilicate as efficient heterogeneous catalyst for baeyer-villiger oxidation[J]. Appl. Catal. A General 519, 155–164 (2016)

    Article  CAS  Google Scholar 

  7. A. Sinhamahapatra, A. Sinha, S.K. Pahari, N. Sutradhar, H.C. Bajaj, A.B. Panda, Room temperature baeyer-villiger oxidation using molecular oxygen over mesoporous zirconium phosphate[J]. Catal. Sci. Technol. 2(11), 2375–2382 (2012)

    Article  CAS  Google Scholar 

  8. W. Zheng, R. Tan, X. Luo, C. Xing, D. Yin, SnO2 Nanoparticle-decorated graphene oxide sheets efficiently catalyze baeyer-villiger oxidation with H2O2[J]. Catal. Lett. 146(2), 281–290 (2016)

    Article  CAS  Google Scholar 

  9. G.-J. ten Brink, J.-M. Vis, I.W.C.E. Arends, R.A. Sheldon, Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. baeyer-villiger reactions in homogeneous solution[J]. J. Org. Chem. 66(7), 2429–33 (2001)

    Article  PubMed  Google Scholar 

  10. Y. Tohru, T. Katsuya, K. Koji, T. Toshihiro, I. Satoshi, M. Teruaki, The baeyer-villiger oxidation of ketones catalyzed by nickel(ii) complexes with combined use of molecular oxygen and aldehyde[J]. Chem. Lett. 4(4), 641–644 (1991)

    Google Scholar 

  11. T. Yamada, T. Takai, O. Rhode, T. Mukaiyama, Direct epoxidation of olefins catalyzed by nickel(II) complexes with molecular oxygen and aldehydes[J]. Bull. Chem. Soc. Japan 64(7), 2109–2117 (1991)

    Article  CAS  Google Scholar 

  12. C. Jimenez-Sanchidrian, J.R. Ruiz, ChemInform abstract: the baeyer-villiger reaction on heterogeneous catalysts[J]. Tetrahedron 64(9), 2011–2026 (2008)

    Article  CAS  Google Scholar 

  13. K. Mandai, M. Hanata, K. Mitsudo, H. Mandai, S. Suga, H. Hashimoto, J. Takada, Bacteriogenic iron oxide as an effective catalyst for baeyer-villiger oxidation with molecular oxygen and benzaldehyde[J]. Tetrahedron 71(50), 9403–9407 (2015)

    Article  CAS  Google Scholar 

  14. X.Y. Zhang, H.L. Yang, G.X. Yang, S.W. Li, X. Wang, J.T. Ma, Metal-free mesoporous SiO2 nanorods as a highly efficient catalyst for the baeyer-villiger oxidation under mild conditions[J]. ACS Sustain. Chem. Eng. 6(5), 5868–5876 (2018)

    Article  CAS  Google Scholar 

  15. J. Zang, Y.J. Ding, Y.P. Pei, R.H. Lin, T. Liu, L. Yan, Y. Lu, Efficient Co3O4/SiO2 catalyst for the Baeyer-Villiger oxidation of cyclohexanone[J]. React. Kinet. Mech. Catal. 112(1), 159–171 (2014)

    Article  CAS  Google Scholar 

  16. Y.L. Ma, Z.Y. Liang, S.X. Feng, Y.D. Zhang, Baeyer-villiger oxidation of cyclohexanone by molecular oxygen with Fe-Sn-O mixed oxides as catalysts[J]. Appl. Organometall. Chem. 29(7), 450–455 (2015)

    Article  CAS  Google Scholar 

  17. C. Jimenez-Sanchidrian, J.M. Hidalgo, R. Llamas, J.R. Ruiz, Baeyer-villiger oxidation of cyclohexanone with hydrogen peroxide/benzonitrile over hydrotalcites as catalysts[J]. Appl. Catal. A: General 312(8), 86–94 (2006)

    Article  CAS  Google Scholar 

  18. H. Subramanian, E.G. Nettleton, S. Budhi, R.T. Koodali, Baeyer-villiger oxidation of cyclic ketones using Fe containing MCM-48 cubic mesoporous materials[J]. J. Mol. Catal. A Chem. 330(1–2), 66–72 (2010)

    Article  CAS  Google Scholar 

  19. Y. Nabae, H. Rokubuichi, M. Mikuni, Y. Kuang, T. Hayakawa, M. Kakimoto, Catalysis by carbon materials for the aerobic baeyer-villiger oxidation in the presence of aldehydes[J]. ACS Catal. 3(2), 230–236 (2013)

    Article  CAS  Google Scholar 

  20. G. Liu, L. Sun, W. Luo, Y. Yang, J.H. Liu, F. Wang, C.J. Guild, Aerobic baeyer-villiger oxidation of ketones over mesoporous Mn-Ce and Mn-Co composite oxides in the presence of benzaldehyde: the effect of valence state[J]. Mol. Catal. 458, 9–18 (2018)

    Article  CAS  Google Scholar 

  21. Z.W. Zhou, J.Z. Wang, J. Qin, Y. Yu, W.L. Wu, The Multifunctional mesoporous Sn-Cu-Ti catalysts for the B-V oxidation of cyclohexanone by molecular oxygen[J]. J. Porous Mater. 25(3), 835–843 (2018)

    Article  CAS  Google Scholar 

  22. A. Corma, L.T. Nemeth, M. Renz, S. Valencia, Sn-zeolite beta as a heterogeneous chemoselective catalyst for baeyer-villiger oxidations[J]. Nature 412(6845), 423 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. A. Corma, M.T. Navarro, L. Nemeth, M. Renz, Sn-MCM-41—a heterogeneous selective catalyst for the baeyer-villiger oxidation with hydrogen peroxide[J]. Chem. Commun. 21, 2190–2191 (2001)

    Article  Google Scholar 

  24. T. Chen, B.D. Wang, Y.C. Li, L. Liu, S.F. Qiu, Hydrothermal synthesis of tin containing mesoporous silicas and their catalytic performance over baeyer-villiger oxidation of cyclohexanone to ε-caprolactone: comparison of Sn/MCM-41 and Sn/SBA-15[J]. J. Porous Mater. 22(4), 949–957 (2015)

    Article  CAS  Google Scholar 

  25. R. Maheswari, M.P. Pachamuthu, A. Ramanathan, B. Subramaniam, Synthesis, characterization, and epoxidation activity of tungsten-incorporated SBA-16 (W-SBA-16)[J]. Indus. Eng. Chem. Res. 53(49), 18833–18839 (2014)

    Article  CAS  Google Scholar 

  26. Z.W. Zhou, P.C. Yu, J. Qin, W.L. Wu, L. Xu, Z.Q. Gu, X.Q. Liu, Synthesis, characterization and catalytic performance of ordered mesoporous Sn-Al catalysts[J]. J. Porous Mater. 23(1), 239–245 (2016)

    Article  CAS  Google Scholar 

  27. Z.W. Zhou, Y. Yu, P.C. Yu, J. Qin, S.S. Dai, W.L. Wu, Ordered mesoporous Sn-TiO2 catalysts via an evaporation induced self-assembly method for the baeyer-villiger oxidation of cyclohexanone by molecular oxygen[J]. React. Kinet. Mech. Catal. 120(1), 295–305 (2017)

    Article  CAS  Google Scholar 

  28. Z.R. Liu, Z.W. Zhou, J. Qin, G. Liu, H. Huang, W.L. Wu, Mesoporous Sn-TiO2 catalysts by molecular protection strategy for the baeyer-villiger oxidation of cyclohexanone with molecular oxygen[J]. Chemistryselect 3(23), 6434–6439 (2018)

    Article  CAS  Google Scholar 

  29. P.P. Qiu, B. Ma, C.T. Hung, W.L.D.Y. Zhao, Spherical mesoporous materials from single to multilevel architectures[J]. Acc. Chem. Res. 52(10), 2928–2938 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. J.H. Pan, Q. Wang, D.W. Bahnemann, Hydrous TiO2 spheres: an excellent platform for the rational design of mesoporous anatase spheres for photoelectrochemical applications[J]. Catal. Today 230(7), 197–204 (2014)

    Article  CAS  Google Scholar 

  31. X. Jiang, T. Herricks, Y. Xia, Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization[J]. Adv. Mater. 15(14), 1205–1209 (2003)

    Article  CAS  Google Scholar 

  32. W.Y. Cheng, J.R. Deka, Y.C. Chiang, A. Rogeau, S.Y. Lu, One-Step, surfactant-free hydrothermal method for syntheses of mesoporous TiO2 nanoparticle aggregates and their applications in high efficiency dye-sensitized solar cells[J]. Chem. Mater. 24(16), 3255–3262 (2012)

    Article  CAS  Google Scholar 

  33. T. Kamegawa, Y. Ishiguro, H. Seto, H. Yamashita, Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification[J]. J. Mater. Chem. A 3(5), 2323–2330 (2015)

    Article  CAS  Google Scholar 

  34. Q. Yue, J. Li, Y. Zhang, X. Cheng, X. Chen, P. Pan, J. Su, A.A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell[J]. J. Am. Chem. Soc. 139(43), 15486–15493 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. C. Wang, F. Wang, Y. Zhao, Y. Li, Q. Yue, Y. Liu, A.A. Elzatahry, A. Al-Enizi, Y. Wu, Y. Deng, D. Zhao, Hollow TiO2-x porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries[J]. Nano Res. 9(1), 165–173 (2016)

    Article  Google Scholar 

  36. Y. Yamaguchi, T. Shimodo, S. Usuki, K. Torigoe, C. Terashima, K. Katsumata, M. Ikekita, A. Fujishima, H. Sakai, K. Nakata, Different hollow and spherical TiO2 morphologies have distinct activities for the photocatalytic inactivation of chemical and biological agents[J]. Photochem. Photobiol. Sci. 15(8), 988–994 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. M. Pal, L. Wan, Y. Zhu, Y. Liu, Y. Liu, W. Gao, Y. Li, G. Zheng, A.A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, Scalable synthesis of mesoporous titania microspheres via spray-drying method[J]. J. Colloid Interface Sci. 479, 150–159 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Ding, I.S. Yang, C.Z. Li, X. Xia, W.I. Lee, S.Y. Dai, Detlef W. Bahenmann, J.H. Pan. Nanoporous TiO2 Spheres with Tailored Textural Properties: Controllable Synthesis, Formation Mechanism, and Photochemical Applications[J]. Progress in Materials Science, 2020, 109.

  39. Y.A. Kumar, K.D. Kumar, H.J. Kim, A novel electrode for supercapacitors: efficient pvp-assisted synthesis of Ni3S2 nanostructures grown on ni foam for energy storage[J]. Dalton Transact. 49(19), 4050–4059 (2020)

    Article  Google Scholar 

  40. J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission[J]. Adv. Funct. Mater. 30(10), 1908299 (2020)

    Article  CAS  Google Scholar 

  41. X.S. Guo, Y.L. Chen, M. Su, D. Li, G.C. Li, C.D. Li, Y. Tian, C.C. Hao, Q.Q. Lei, Enhanced electrorheological performance of Nb-Doped TiO2 microspheres based suspensions and their behavior characteristics in low-frequency dielectric spectroscopy[J]. ACS Appl. Mater. Interfaces 7(48), 26624–26632 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. W.G. Liu, Y.M. Xu, W. Zhou, X.F. Zhang, X.L. Cheng, H. Zhao, S. Dao, L.H. Huo, A facile synthesis of hierarchically porous TiO2 microspheres with carbonaceous species for visible-light photocatalysis[J]. J. Mater. Sci. Technol. 33(1), 39–46 (2016)

    Article  Google Scholar 

  43. A. Yasin, F.Q. Guo, G.P. Demopoulos, Aqueous, screen-printable paste for fabrication of mesoporous composite anatase-rutile TiO2 nanoparticle thin films for (Photo) electrochemical devices[J]. ACS Sustain. Chem. Eng. 4(4), 2173–2181 (2016)

    Article  CAS  Google Scholar 

  44. X.D. Zhu, L.X. Pei, R.R. Zhu, J. Yu, R.Y. Tang, F. Wei, Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity[J]. Sci. Rep. 8(1), 12387–12401 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  45. M.E. Yu, C.T. Li, G.M. Zeng, Y. Zhou, X.N. Zhang, Y.E. Xie, The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: promotional effect of SnO2[J]. Appl. Surf. Sci. 342, 174–182 (2015)

    Article  CAS  Google Scholar 

  46. M. Nikoorazm, N. Noori, B. Tahmasbi, A palladium complex immobilized onto mesoporous silica: a highly efficient and reusable catalytic system for carbon-carbon bond formation and anilines synthesis[J]. Trans. Metal Chem. 42(5), 469–481 (2017)

    Article  CAS  Google Scholar 

  47. H.Y. Li, D.J. Wang, P. Wang, H.M. Fan, T.F. Xie, Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres[J]. Chem.-A Eur. J. 15(45), 12521–12527 (2009)

    Article  CAS  Google Scholar 

  48. Q. Zhang, H. Yang, Y. Wei, Effect of ethanol on the crystallinity and acid sites of MFI zeolite nanosheets[J]. RSC Adv. 4(100), 56938–56944 (2014)

    Article  CAS  Google Scholar 

  49. M.P. Pachamuthu, K. Shanthi, R. Luque, A. Ramanathan, Identification of potential therapeutics to conquer drug resistance in salmonella typhimurium: drug repurposing strategy[J]. Green Chem. 15(8), 2158–2166 (2013)

    Article  CAS  Google Scholar 

  50. G.H. Chen, S.Z. Ji, Y.H. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, G. Yu, Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced uv-visible light photocatalytic activity[J]. Nanoscale 7(7), 3117–3125 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. W.J. Hong, M. Kang, The super-hydrophilicities of Bi-TiO2, V-TiO2, and Bi-V-TiO2 nano-sized particles and their benzene photodecompositions with H2O addition[J]. Mater. Lett. 60(9–10), 1296–1305 (2006)

    Article  CAS  Google Scholar 

  52. Y. Xie, X. Zhao, H. Tao, The Influence of O2 partial pressure on the structure and surface wettability of C-modified TiO2 films prepared by magnetron co-sputtering[J]. Chem. Phys. Lett. 457(1–3), 148–153 (2008)

    Article  CAS  Google Scholar 

  53. I. Mahdi, B. Susanta, K. Se-Hun, Influence of surface defects and size on photochemical properties of SnO2 nanoparticles[J]. Materials 11(6), 904 (2018)

    Article  Google Scholar 

  54. X. Zhang, Z.Q. Bao, X.Y. Tao, H.X. Sun, W. Chen, X.F. Zhou, Sn-doped TiO2 nanorod arrays and application in perovskite solar cells[J]. RSC Adv. 4(109), 64001–64005 (2014)

    Article  CAS  Google Scholar 

  55. Y. Masuda, T. Ohji, K. Kato, Multineedle TiO2 nanostructures, self-assembled surface coatings, and their novel properties[J]. Crys. Design 10(2), 913–822 (2010)

    Article  CAS  Google Scholar 

  56. Z.Q. Li, Y.P. Que, L.E. Mo, W.C. Chen, Y. Ding, Y.M. Ma, L. Jiang, L.H. Hu, S.Y. Dai, One-pot synthesis of mesoporous TiO2 micropheres and its application for high-efficiency dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces 7(20), 10928–10934 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. J. Andas, F. Adam, I.A. Rahman, T.Y. Yun, Optimization and mechanistic study of the liquid-phase oxidation of naphthalene over biomass-derived iron catalyst[J]. Chem. Eng. J. 252(1), 382–392 (2014)

    Article  CAS  Google Scholar 

  58. J.S. Reddy, P. Liu, A. Sayari, Vanadium containing crystalline mesoporous molecular sieves Leaching of vanadium in liquid phase reactions[J]. Appl. Catal. A General 148(1), 7–21 (1996)

    Article  Google Scholar 

  59. Y.L. Ma, Z.Y. Liang, S.X. Feng, B-V oxidation of cyclohexanone by molecular oxygen with Fe-Sn-O mixed oxides as catalysts[J]. Appl. Organometal. Chem. 29, 450–455 (2015)

    Article  CAS  Google Scholar 

  60. S.Y. Chen, X.T. Zhou, Y. Li, R.C. Luo, H.B. Ji, Biomimetic Baeyer-Villiger oxidation of ketones with SnO2 as cocatalyst, features in activating carbonyl group of substrates[J]. Chem. Eng. J. 241, 138–144 (2014)

    Article  CAS  Google Scholar 

  61. S. Hazra, N.M.R. Martins, M.L. Kuznetsov, M.F.C. Guedes da Silva, A.J.L. Pombeiro, Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal-Sn(IV) compounds and their catalytic activity in Baeyer-Villiger oxidation of cyclohexanone[J]. Dalton Trans. 46(39), 13364–13375 (2019)

    Article  Google Scholar 

  62. S.Y. Chen, X.T. Zhou, H.B. Ji, Insight into the cocatalyst effect of 4A molecular sieve on Sn(II) porphyrin-catalyzed B-V oxidation of cyclohexanone[J]. Catal. Today 264, 191–197 (2016)

    Article  CAS  Google Scholar 

  63. D.P. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods[J]. J. Am. Chemi. Soc. 125(47), 14539–14548 (2003)

    Article  CAS  Google Scholar 

  64. X.C. Jiang, T. Herricks, Y.N. Xia, Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization[J]. Adv. Mater. 15(14), 1205–1209 (2010)

    Article  Google Scholar 

  65. J.G. Yu, J.J. Fan, L. Zhao, Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method[J]. Electrochimica Acta 55(3), 597–602 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFD1101204); University-Industry Cooperation Projects of Jiangsu Province (No. BY20200011) and Open Project of Beijing Key Laboratory for Enze Biomass and Fine Chemicals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Zhou or Wenliang Wu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhou, Z., Qin, J. et al. PVP-assisted Sn-Ti microspheres for the efficient B–V oxidation of cyclohexanone. J Porous Mater 28, 1215–1225 (2021). https://doi.org/10.1007/s10934-021-01068-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01068-2

Keywords

Navigation