Skip to main content
Log in

Sol–gel synthesized ZnO thin films doped with Rb and Al for self-cleaning antibacterial applications

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aluminum and rubidium-doped zinc oxide thin films were deposited utilizing sol–gel dip coating on glass substrates. X-ray diffraction, SEM-AFM, and Raman spectrometer were used to study the effect of dopant content on structural, surface morphological, vibrational, and optical properties. The XRD analysis verified zinc oxide’s hexagonal wurtzite crystal structure. Wavy-like cluster formation was seen in the SEM images. The Raman and XRD measurements indicated that introducing Rb impurities into the ZnO host lattice resulted in a deterioration in crystal quality due to lattice stress. Optical spectra showed a blue shift in the bandgap. In addition, the antibacterial activity against E. coli and contact angle measurements were also investigated. The increase in dopant concentration resulted in a change from a hydrophilic to a hydrophobic nature, and all samples demonstrated significant antibacterial activity against E. coli.

Graphical Abstract

Highlights

  • Al and Rb doped ZnO thin films were fabricated using the sol–gel dip coating technique.

  • Changing dopant concentrations affected ZnO crystallinity.

  • The synthesized films revealed grains with a wavy texture.

  • Increasing contact angle shows hydrophobicity.

  • The antibacterial activity of deposited films against E. coli bacteria improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Badgujar AC, Yadav BS, Jha GK, Dhage SR (2022) Room temperature sputtered aluminum-doped ZnO thin film transparent electrode for application in solar cells and for low-band-gap optoelectronic devices ACS Omega 7(16):14203–14210. https://doi.org/10.1021/acsomega.2c00830

    Article  CAS  Google Scholar 

  2. Zhao K, Xie J, Zhao Y, Han D, Wang Y, Liu B, Dong J (2022) Investigation on transparent, conductive ZnO: Al films deposited by atomic layer deposition process Nanomaterials 12(1):172. https://doi.org/10.3390/nano12010172

    Article  CAS  Google Scholar 

  3. Koralli P, Fiat Varol S, Mousdis G, Mouzakis DE, Merdan Z, Kompitsas M (2022) Comparative studies of undoped/Al-doped/In-doped ZnO transparent conducting oxide thin films in optoelectronic applications Chemosensors 10(5):162. https://doi.org/10.3390/chemosensors10050162

    Article  CAS  Google Scholar 

  4. Ghos BC, Farhad SFU, Patwary MAM, Majumder S, Hossain MA, Tanvir NI, Rahman MA, Tanaka T, Guo Q (2021) Influence of the substrate, process conditions, and postannealing temperature on the properties of ZnO thin films grown by the successive ionic layer adsorption and reaction method. ACS Omega 6:2665–2674. https://doi.org/10.1021/acsomega.0c04837

    Article  CAS  Google Scholar 

  5. Muchuweni E, Sathiaraj TS, Nyakotyo H (2017) Synthesis and characterization of zinc oxide thin films for optoelectronic applications Heliyon 3(4):e00285. https://doi.org/10.1016/j.heliyon.2017.e00285

    Article  CAS  Google Scholar 

  6. Yergaliuly G, Soltabayev B, Kalybekkyzy S, Bakenov Z, Mentbayeva A (2022) Effect of thickness and reaction media on properties of ZnO thin films by SILAR Sci Rep 12(1):1–13. https://doi.org/10.1038/s41598-022-04782-2

    Article  CAS  Google Scholar 

  7. Cranton WM, Kalfagiannis N, Hou X, Ranson R, Koutsogeorgis DC (2016) Enhanced electrical and optical properties of room temperature deposited aluminium doped zinc oxide (AZO) thin films by excimer laser annealing. Opt Lasers Eng 80:45–51. https://doi.org/10.1016/j.optlaseng.2015.12.010

    Article  Google Scholar 

  8. Van Toan N, Tuoi TTK, Inomata N, Toda M, Ono T (2021) Aluminum doped zinc oxide deposited by atomic layer deposition and its applications to micro/nano devices Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-020-80880-3

    Article  CAS  Google Scholar 

  9. Zhao B, Tang LD, Wang B, Liu BW, Feng JH (2016) Optical and electrical characterization of gradient AZO thin film by magnetron sputtering J Mater Sci: Mater Electron 27(10):10320–10324. https://doi.org/10.1007/s10854-016-5115-z

    Article  CAS  Google Scholar 

  10. Tsay CY, Yu SH (2021) Melioration of electrical and optical properties of Al and B co-doped ZnO transparent semiconductor thin films Coatings 11(10):1259. https://doi.org/10.3390/coatings11101259

    Article  CAS  Google Scholar 

  11. Anand V, Sakthivelu A, Kumar KDA, Valanarasu S, Ganesh V, Shkir M, AlFaify S, Algarni H (2018) Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics. J Sol-Gel Sci Technol 86:293–304. https://doi.org/10.1007/s10971-018-4646-6

    Article  CAS  Google Scholar 

  12. Luo JT, Zheng ZH, Liang GX, Li F, Fan P (2017) Enhanced thermoelectric properties in AZO thin films by introducing Ti co-dopant. Mater Res Bull 94:307–312. https://doi.org/10.1016/j.materresbull.2017.06.017

    Article  CAS  Google Scholar 

  13. Balakrishnan G, Sinha V, Peethala YP, Kumar M, Nimal RGR, Hameed HJ, Raslan EH (2020) Structural and optical properties of ZnO thin film prepared by sol-gel spin coating Mater Sci Pol 38(1):17–22. https://doi.org/10.2478/msp-2020-0016

    Article  CAS  Google Scholar 

  14. Bouattour S, do Rego AMB, Ferreira LFV (2010) Photocatalytic activity of Li+–Rb+–Y3+ doped or codoped TiO2 under sunlight irradiation. Mater Res Bull 45(7):818–825. https://doi.org/10.1016/j.materresbull.2010.03.014

    Article  CAS  Google Scholar 

  15. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Jt Bone Spine 74(4):324–329. https://doi.org/10.1016/j.jbspin.2007.02.002

    Article  CAS  Google Scholar 

  16. Jia L, Yang LM, Wang W, Huang ST, Xu Z (2019) Preparation and characterization of Rb-doped TiO2 powders for photocatalytic applications. Rare Met 2019:1–7. https://doi.org/10.1007/s12598-019-01241-2

  17. Manoharan C, Pavithra G, Bououdina M, Dhanapandian S, Dhamodharan P (2016) Characterization and study of antibacterial activity of spray pyrolyzed ZnO: Al thin films. Appl Nanosci 6(6):815–825. https://doi.org/10.1007/s13204-015-0493-8

    Article  CAS  Google Scholar 

  18. Wang J, Li Y, Kong Y, Zhou J, Wu J, Wu X, Jiang L (2015) Non-fluorinated superhydrophobic and micro/nano hierarchical Al doped ZnO film: the effect of Al doping on morphological and hydrophobic properties. RSC Adv 5(99):81024–81029. https://doi.org/10.1039/c5ra15952k

    Article  CAS  Google Scholar 

  19. Thool GS, Singh AK, Singh RS, Gupta A, Susan MABH (2014) Facile synthesis of flat crystal ZnO thin films by solution growth method: a micro-structural investigation. J Saudi Chem Soc 18(5):712–721. https://doi.org/10.1016/j.jscs.2014.02.005

    Article  CAS  Google Scholar 

  20. Murthy MN, Ravinder G, Anusha S, Sreelatha CJ (2022) Fabrication and the impact of Fe and Al substitution on structural, morphological, vibrational and optical properties of Fe: Al co-doping zinc oxide nanostructured thin films developed by Arduino based spin coating device. Mater Today Proc 57:2166–2173. https://doi.org/10.1016/j.matpr.2021.12.215

    Article  CAS  Google Scholar 

  21. Liu Y, Li Y, Zeng H (2013) ZnO-based transparent conductive thin films: doping, performance, and processing. J Nanomater 2013:1–9. https://doi.org/10.1155/2013/196521

    Article  CAS  Google Scholar 

  22. Lin JC, Peng KC, Peng IG, Lee SL (2009) Corrosion behavior of Al, Sc-co-doped ZnO thin films in 3.5% NaCl solution. Thin Solid Films 517(17):4777–4781. https://doi.org/10.1016/j.tsf.2009.03.080

    Article  CAS  Google Scholar 

  23. Bouhouche S, Bensouici F, Toubane M, Azizi A, Otmani A, Chebout K, Bououdina M (2018) Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films. Mater Res Express 5(5):056407. https://doi.org/10.1088/2053-1591/aac4e8

    Article  CAS  Google Scholar 

  24. Satalkar M, Kane SN (2016) On the study of structural properties and cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4 nano ferrite: effect of Ni addition. J Phys Conf Ser 755:012050. https://doi.org/10.1088/1742-6596/755/1/012050

    Article  CAS  Google Scholar 

  25. Akin N, Ozen Y, Efkere HI, Cakmak M, Ozcelik S (2015) Surface structure and photoluminescence properties of AZO thin films on polymer substrates. Surf Interface Anal 47(1):93–98. https://doi.org/10.1002/sia.5677

    Article  CAS  Google Scholar 

  26. Yang H, Drossinos Y, Hogan CJ,Jr (2019) Excess thermal energy and latent heat in nanocluster collisional growth. J Chem Phys 151(22):224304. https://doi.org/10.1063/1.5129918

    Article  CAS  Google Scholar 

  27. Alvarado JA, Maldonado A, Juarez H, Pacio M (2013) Synthesis of colloidal ZnO nanoparticles and deposit of thin films by spin coating technique. J Nanomater 2013:1–9. https://doi.org/10.1155/2013/903191

    Article  CAS  Google Scholar 

  28. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13(1):1–7. https://doi.org/10.1186/s11671-018-2624-0

    Article  CAS  Google Scholar 

  29. Beena Unni A, Winkler R, Duarte DM, Chat K, Adrjanowicz K (2022) Influence of surface roughness on the dynamics and crystallization of vapor-deposited thin films. J Phys Chem B 126:8072–8079. https://doi.org/10.1021/acs.jpcb.2c04541

    Article  CAS  Google Scholar 

  30. Zendehnam A, Mirzaee M, Miri S (2014) Influence of deposition rate on PL spectrum and surface morphology of ZnO nanolayers deposited on Si (100) substrate. Bull Mater Sci 37(2):179–183. https://doi.org/10.1007/s12034-014-0638-5

    Article  CAS  Google Scholar 

  31. Brassard JD, Sarkar DK, Perron J (2011) Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS Appl Mater Interfaces 3(9):3583–3588. https://doi.org/10.1021/am2007917

    Article  CAS  Google Scholar 

  32. Khranovskyy V, Ulyashin A, Lashkarev G, Svensson BG, Yakimova R (2008) Morphology, electrical and optical properties of undoped ZnO layers deposited on silicon substrates by PEMOCVD. Thin Solid Films 516(7):1396–1400. https://doi.org/10.1016/j.tsf.2007.03.064

    Article  CAS  Google Scholar 

  33. Pal M, Bera S, Sarkar S, Jana S (2014) Influence of Al doping on microstructural, optical and photocatalytic properties of sol–gel based nanostructured zinc oxide films on glass. RSC Adv 4(23):11552–11563. https://doi.org/10.1039/C3RA44612C

    Article  CAS  Google Scholar 

  34. Lee WJ, Chang YH (2018) Growth without postannealing of monoclinic VO2 thin film by atomic layer deposition using VCl4 as precursor. Coatings 8(12):431. https://doi.org/10.3390/coatings8120431

    Article  CAS  Google Scholar 

  35. Ozgun DO, Gul HI, Yamali C, Sakagami H, Gulcin I, Sukuroglu M, Supuran CT (2019) Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg Chem 84:511–517. https://doi.org/10.1007/s10854-018-00620-2

    Article  CAS  Google Scholar 

  36. Srinivasulu T, Saritha K, Reddy KR (2017) Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod Electron Mater 3(2):76–85. https://doi.org/10.1016/j.moem.2017.07.001

    Article  Google Scholar 

  37. Pinto SRC, Rolo AG, Chahboun A, Kashtiban RJ, Bangert U, Gomes MJM (2010) Raman study of stress effect on Ge nanocrystals embedded in Al2O3. Thin Solid Films 518(19):5378–5381. https://doi.org/10.1016/j.tsf.2010.03.035

    Article  CAS  Google Scholar 

  38. Abood AT, Hussein OAA, Al-Timimi MH, Abdullah MZ, Al Aani HMS, Albanda WH (2020) Structural and optical properties of nanocrystalline SnO2 thin films growth by electron beam evaporation. AIP Conf Proc 2213:020036. https://doi.org/10.1063/5.0000454

    Article  CAS  Google Scholar 

  39. Sharma M, Bera K, Mishra R, Kuanr AV (2021) Structural, magnetic, and optical properties of Mn2+ doping in ZnO thin films. Surfaces 4(4):268–278. https://doi.org/10.3390/surfaces4040022

    Article  CAS  Google Scholar 

  40. Czternastek H (2004) ZnO thin films prepared by high pressure magnetron sputtering. Opto-electron Rev 12(1):49–52. https://doi.org/10.4236/ojmetal.2013.32A2002

    Article  CAS  Google Scholar 

  41. Jalil Z (2018) Structural and optical properties of zinc oxide (ZnO) based thin films deposited by sol-gel spin coating method. J Phys: Conf Ser 1116:032020. https://doi.org/10.1088/1742-6596/1116/3/032020

    Article  CAS  Google Scholar 

  42. Hacini N, Ghamnia M, Dahamni MA, Boukhachem A, Pireaux J-J, Houssiau L (2021) Compositional, structural, morphological, and optical properties of ZnO thin films prepared by PECVD technique. Coatings 11(2):202. https://doi.org/10.3390/coatings11020202

    Article  CAS  Google Scholar 

  43. Ramos R, Godoy MPFD, Rangel EC, Cruz NCD, Durrant SF, Bortoleto JRR (2020) Co-doped p-type ZnO: Al-N thin films grown by RF-magnetron sputtering at room temperature. Mater Res 23:e20200049. https://doi.org/10.1590/1980-5373-MR-2020-0049

    Article  CAS  Google Scholar 

  44. Chen J, Chen D, He J, Zhang S, Chen Z (2009) The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films Appl Surf Sci 255(23):9413–9419. https://doi.org/10.1016/j.apsusc.2009.07.044

    Article  CAS  Google Scholar 

  45. Zhai CH, Zhang RJ, Chen X, Zheng YX, Wang SY, Liu J, Dai N, Chen LY (2016) Effects of Al doping on the properties of ZnO thin films deposited by atomic layer deposition. Nanoscale Res Lett 11(1):407. https://doi.org/10.1186/s11671-016-1625-0

    Article  CAS  Google Scholar 

  46. Liu WL, Zhang YF (2018) Blueshift of absorption edge and photoluminescence in Al doped ZnO thin films Integr Ferroelectr 188(1):112–120. https://doi.org/10.1080/10584587.2018.1454222

    Article  CAS  Google Scholar 

  47. Shi Y, Xi J, Lei T, Yuan F, Dai J, Ran C, Dong H, Jiao B, Hou X, Wu Z (2018) Rubidium doping for enhanced performance of highly efficient formamidinium-based perovskite light-emitting diodes. ACS Appl Mater Interfaces 10(11):9849–9857. https://doi.org/10.1021/acsami.8b00079

    Article  CAS  Google Scholar 

  48. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett 10(1):1–12. https://doi.org/10.1186/s11671-015-1034-9

    Article  CAS  Google Scholar 

  49. Shaban M, Zayed M, Hamdy H (2017) Nanostructured ZnO thin films for self-cleaning applications. RSC Adv 7(2):617–631. https://doi.org/10.1039/C6RA24788A

    Article  CAS  Google Scholar 

  50. Bazhan Z, Ghodsi FE, Mazloom J (2017) The surface wettability and improved electrochemical performance of nanostructured CoxFe3−xO4 thin film. Surf Coat Technol 309:554–562. https://doi.org/10.1016/j.surfcoat.2016.12.024

    Article  CAS  Google Scholar 

  51. Cho YC, Cha S-Y, Shin JM, Park JH, Park SE, Cho CR, Park S, Pak HK, Jeong S-Y, Lim A-R (2009) The conversion of wettability in transparent conducting Al-doped ZnO thin film. Solid State Commun 149:609–611. https://doi.org/10.1016/j.ssc.2009.01.029

    Article  CAS  Google Scholar 

  52. Chen GJ, Jian SR, Juang JY (2018) Surface analysis and optical properties of Cu-doped ZnO thin films deposited by radio frequency magnetron sputtering. Coatings 8(8):266. https://doi.org/10.3390/coatings8080266

    Article  CAS  Google Scholar 

  53. Poddighe M, Innocenzi P (2021) Hydrophobic thin films from sol–gel processing: a critical review. Materials 22:6799. https://doi.org/10.3390/ma14226799

    Article  CAS  Google Scholar 

  54. Mardosaitė R, Jurkeviciute A, Rackauskas S (2021) Superhydrophobic ZnO nanowires: wettability mechanisms and functional applications. Cryst Growth Des 21(8):4765–4779. https://doi.org/10.1021/acs.cgd.1c00449

    Article  CAS  Google Scholar 

  55. Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B: Biointerfaces 94:143–150. https://doi.org/10.1016/j.colsurfb.2012.01.046

    Article  CAS  Google Scholar 

  56. Thomas D, Abraham J, Sadasivuni KK (2019) A scrutiny of antibacterial activity of pure and iodine doped ZnO thin films synthesized by mSILAR method. AIP Conf Proc 2162:020166. https://doi.org/10.1063/1.5130376

    Article  CAS  Google Scholar 

  57. Hashim MS, Al Marjani MF, Saloom HT, Khaleel RS, Khadam ZA, Jasim AS (2019) Investigation of the antibacterial activity of silver and zinc-containing solutions and Ag: ZnO films against some pathogenic bacteria. Jordan J Biol Sci 12(4):415–419

    CAS  Google Scholar 

  58. Kumar P, Dev S, Dhayal SS, Acharya V, Kumar S, Kumar S, Singh N, Dhar R(2021) Synergistic effect of Mg and Se co-doping on the structural, optical and antibacterial activity of ZnO thin films. Inorg Chem Commun 131:108801. https://doi.org/10.1016/j.inoche.2021.108801

    Article  CAS  Google Scholar 

  59. Karthick R, Sakthivel P, Selvaraju C, Paulraj MS (2021) Tuning of photoluminescence and antibacterial properties of ZnO nanoparticles through Sr doping for biomedical applications. J Nanomater 2021:8352204. https://doi.org/10.1155/2021/8352204

    Article  CAS  Google Scholar 

  60. Naskar A, Lee S, Kim KS (2020) Antibacterial potential of Ni-doped zinc oxide nanostructure: comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Adv 10(3):1232–1242. https://doi.org/10.1039/c9ra09512h

    Article  CAS  Google Scholar 

  61. Shankar Ganesh A, Subramani S, Anandh B, Sakthivel R (2022) Analyzing antimicrobial activity of aluminium doped zno thin films. Rasayan J Chem 15(1):387–394. https://doi.org/10.31788/RJC.2022.1516626

    Article  Google Scholar 

Download references

Acknowledgements

Department of Physics of Kakatiya University received funding under a special assistance program from UGC-India [No: F.530/24/ DRS-II/2015(UGC-SAP-II)], for which the authors are very appreciative.

Author information

Authors and Affiliations

Authors

Contributions

MNM: conceptualization, methodology, investigation, validation, formal analysis, writing—original draft, data curation. VG: conceptualization, methodology, investigation. GR: investigation, data curation, formal analysis. SA: investigation, data curation, formal analysis. GC: conceptualization, methodology, investigation. CJS: conceptualization, methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to C. J. Sreelatha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, M.N., Ganesh, V., Ravinder, G. et al. Sol–gel synthesized ZnO thin films doped with Rb and Al for self-cleaning antibacterial applications. J Sol-Gel Sci Technol 105, 683–693 (2023). https://doi.org/10.1007/s10971-023-06044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06044-7

Keywords

Navigation