Skip to main content

Advertisement

Log in

Electrochemical performance of transition metal doped Co3O4 as electrode material for supercapacitor applications

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanoarchitecture of transition metal oxides has been deemed to play an important role in the supercapacitor electrode material. In this regard, transition metal (Ni, Mn, and Zn) doped Co3O4 has been synthesized using a facile co-precipitation technique. X-ray diffraction analysis revealed the face-centered cubic lattice of Co3O4 with slight variation in lattice parameters when iso-valent metals are doped at the Co site. Densely packed spherical grains of pure Co3O4 with an average grain size of 50 nm are observed. However, the incorporation of a nominal amount of Ni, Mn, and Zn at Co-site resulted in a favorable porous morphology. Therefore increasing porosity with substitution and presence of constituent elements is noticed from the scanning electron microscope and elemental mapping, respectively. Electrochemical measurements including cyclic voltammetry, galvanostatic charge-discharge curves, and electrochemical impedance spectroscopy are carried out in 4 M KOH solution in three-electrode systems. It has been observed that all electrode materials displayed typical pseudocapacitive dominant behavior but it is more obvious in Mn0.05Co2.95O4. This composition also exhibited the highest value of specific capacitance of 80.8 F/g at the current density of 1 A/g. Therefore, based on the calculated values of energy and power density we claim that the Mn0.05Co2.95O4 is a potential candidate for electrochemical supercapacitor applications.

Graphical abstract

Highlights

  • Transition metal doped Co3O4 prepared by sol-gel auto combustion method.

  • Structural analysis revealed the formation of single-phase spinel structure of all compositions.

  • SEM and EDX investigations exhibited the flower-like morphology and elemental purity of pure Co3O4.

  • Specific capacitance, energy density, and power density have been evaluated and potential as an electrode material for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Uzzaman T, Zawar S, Ansar MT, Ramay SM, Mahmood A, Atiq S (2021) Electrochemical performance of NiFe2O4 nanostructures incorporating activated carbon as an efficient electrode material. Ceram Int 47(8):10733–10741

    Article  CAS  Google Scholar 

  2. Ali F, Khalid NR (2020) Effect of calcination temperature on structural, morphological and electrochemical properties of Sn doped Co3O4 nanorods. Ceram Int 46(15):24137–24146

    Article  CAS  Google Scholar 

  3. Li G, Chen M, Ouyang Y, Yao D, Lu L, Wang L, Hao Q (2019) Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl Surf Sci 469:941–950

    Article  CAS  Google Scholar 

  4. Ghaffar A, Ali G, Zawar S, Hasan M, Mustafa GM, Atiq S, Ramay SM (2020) Electrochemical performance of Li+ insertion/extraction in Ni-substituted ZnCo2O4 as an emerging highly efficient anode material. RSC Adv 10(48):28550–28559

    Article  CAS  Google Scholar 

  5. Chen H, Wang J, Liao F, Han X, Xu C, Zhang Y (2019) Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceram Int 45(6):8008–8016

    Article  CAS  Google Scholar 

  6. Zhang GF, Qin P, Song JM (2019) Facile fabrication of Al2O3-doped Co3O4/graphene nanocomposites for high performance asymmetric supercapacitors. Appl Surf Sci 493:55–62

    Article  CAS  Google Scholar 

  7. Aadil M, Zulfiqar S, Shahid M, Haider S, Shakir I, Warsi MF (2020) Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications. J Alloy Compd 844:156062

    Article  CAS  Google Scholar 

  8. Zhu YR, Peng PP, Wu JZ, Yi TF, Xie Y, Luo S (2019) Co3O4@ NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ion 336:110–119

    Article  CAS  Google Scholar 

  9. Padmanathan N, Selladurai S (2013) Sonochemically precipitated spinel Co3O4 and NiCo2O4 nanostructures as an electrode materials for supercapacitor. In AIP Conference Proceedings (Vol. 1512, No. 1). American Institute of Physics, p 1216–1217

  10. Zhao J, Li Y, Xu Z, Wang D, Ban C, Zhang H (2018) Unique porous Mn2O3/C cube decorated by Co3O4 nanoparticle: Low-cost and high-performance electrode materials for asymmetric supercapacitors. Electrochim Acta 289:72–81

    Article  CAS  Google Scholar 

  11. Shajkumar A, Sahu S, Duraisamy N, Schmidt-Mende L, Ramadoss A (2021) Layered double hydroxide as electrode material for high-performance supercapattery. In Advances in Supercapacitor and Supercapattery. Elsevier, p 199–254

  12. Li S, Wang Y, Sun J, Zhang Y, Xu C, Chen H (2020) Hydrothermal synthesis of Fe-doped Co3O4 urchin-like microstructures with superior electrochemical performances. J Alloy Compd 821:153507

    Article  CAS  Google Scholar 

  13. Zawar S, Atiq S, Riaz S, Naseem S (2016) Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites. Superlattices Microstructures 93:50–56

    Article  CAS  Google Scholar 

  14. Jia WL, Li J, Lu ZJ, Juan YF, Jiang YQ (2020) Synthesis of porous Co3O4/Reduced graphene oxide by a two-step method for supercapacitors with excellent electrochemical performance. J Alloy Compd 815:152373

    Article  CAS  Google Scholar 

  15. Cheng L, Zhang Q, Xu M, Zhai Q, Zhang C (2021) Two-for-one strategy: Three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor. J Colloid Interfac Sci 583:299–309

    Article  CAS  Google Scholar 

  16. Chen H, Wang J, Liao F, Han X, Xu C, Zhang Y (2019) Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceram Int 45(6):8008–8016

    Article  CAS  Google Scholar 

  17. Chen J, Xu Z, Zhu H, Liu R, Song X, Song Q, Cui H (2020) An ultrafast supercapacitor built by Co3O4 with tertiary hierarchical architecture. Vacuum 174:109219

    Article  CAS  Google Scholar 

  18. Deng S, Xiao X, Chen G, Wang L, Wang Y (2016) Cd doped porous Co3O4 nanosheets as electrode material for high-performance supercapacitor application. Electrochim Acta 196:316–327

    Article  CAS  Google Scholar 

  19. Zhu Q (2022) Preparation and electrochemical properties of Co3O4 nanorod arrays from the spent lithium-ion batteries. J Mater Sci: Mater Electron 33(1):298–305

    CAS  Google Scholar 

  20. Dutta S, Pal S, De S (2019) Mixed solvent exfoliated transition metal oxides nanosheets based flexible solid state supercapacitor devices endowed with high energy density. N J Chem 43(31):12385–12395

    Article  CAS  Google Scholar 

  21. Chung YC, Julistian A, Saravanan L, Chen PR, Xu BC, Xie PJ, Lo AY (2021) Hydrothermal synthesis of CuO/RuO2/MWCNT nanocomposites with morphological variants for high efficient supercapacitors. Catalysts 12(1):23

    Article  Google Scholar 

  22. Li S, Xiao Y, Zhu YF, Li YC, Chen T, Wang D, Guo XD (2021) A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery. Chem Eng J 412:128719

    Article  CAS  Google Scholar 

  23. Li H, Peng G, Wang W, Zhang Z (2022) Spinel Flowered-shaped MnCo2O4 Nanocrystals for Highly Efficient Capacitive Desalination. Mater Lett 326:132970

  24. Cho I, Selvaraj AR, Bak J, Kim H, Prabakar K (2022) Anomalous increase in specific capacitance in MXene during galvanostatic cycling studies. J Energy Storage 53:105207

  25. Cullity BD (1956) Elements of X-ray Diffraction. Addison-Wesley Publishing

  26. Harry M, Chowdhury M, Cummings F, Arendse CJ (2019) Elemental Cu doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection. Sens Bio-Sens Res 23:100262

    Article  Google Scholar 

  27. Zawar S, Ali G, Afshan N, Atiq S, Mustafa GM, Hasnain H, Iftikhar FJ (2021) Ni-doped Co3O4 spheres decorated on CNTs nest-like conductive framework as efficiently stable hybrid anode for Na-ion batteries. Ceram Int 47(19):27854–27862

    Article  CAS  Google Scholar 

  28. Zawar S, Ali G, Mustafa GM, Patil SA, Ramay SM, Atiq S (2022) Mn0.06Co2.94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors. J Energy Storage 50:104298

    Article  Google Scholar 

  29. Zawar S, Akbar M, Mustafa GM, Ali G, Riaz S, Atiq S, Chung KY (2021) CNTs embedded in layered Zn-doped Co3O4 nano-architectures as an efficient hybrid anode material for SIBs. J Alloy Compd 867:158730

    Article  CAS  Google Scholar 

  30. Li S, Wang Y, Sun J, Zhang Y, Xu C, Chen H (2020) Hydrothermal synthesis of Fe-doped Co3O4 urchin-like microstructures with superior electrochemical performances. J Alloy Compd 821:153507

    Article  CAS  Google Scholar 

  31. Zhu Y, An S, Cui J, Qiu H, Sun X, Zhang Y, He W (2019) Three-dimensional network-like amorphous NiCo-LDH nanofilms coupled with Co3O4 nanowires for high-performance supercapacitor. Ceram Int 45(17):22095–22103

    Article  CAS  Google Scholar 

  32. Mishra N, Shinde S, Vishwakarma R, Kadam S, Sharon M, Sharon M (2013) MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. In AIP Conference Proceedings (Vol. 1538, No. 1). American Institute of Physics, p 228–236

  33. Xavier AR, Ravichandran AT, Vijayakumar S, Angelin MD, Rajkumar S, Merlin JP (2022) Synthesis and characterization of Sr-doped CdO nanoplatelets for supercapacitor applications. J Mater Sci: Mater Electron 33(11):8426–8434

    CAS  Google Scholar 

  34. Ding Y, Peng Y, Chen S, Li Z, Zhang X, Falaras P, Hu L (2019) A competitive coordination strategy to synthesize Co3O4@ carbon flower-like structures for high-performance asymmetric supercapacitors. Appl Surf Sci 495:143502

    Article  CAS  Google Scholar 

  35. Cheng L, Zhang Q, Xu M, Zhai Q, Zhang C (2021) Two-for-one strategy: Three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor. J Colloid Interfac Sci 583:299–309

    Article  CAS  Google Scholar 

  36. Bao Y, Deng Y, Wang M, Xiao Z, Wang M, Fu Y, Wang L (2020) A controllable top-down etching and in-situ oxidizing strategy: metal-organic frameworks derived α-Co/Ni (OH) 2@ Co3O4 hollow nanocages for enhanced supercapacitor performance. Appl Surf Sci 504:144395

    Article  CAS  Google Scholar 

  37. Zhou S, Hao C, Wang J, Wang X, Gao H (2018) Metal-organic framework templated synthesis of porous NiCo2O4/ZnCo2O4/Co3O4 hollow polyhedral nanocages and their enhanced pseudocapacitive properties. Chem Eng J 351:74–84

    Article  CAS  Google Scholar 

  38. Zhu Z, Zhou Y, Wang S, Zhao C, Li Z, Chen G, Zhao C (2018) Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni (OH) 2@ Co electrode for superior supercapacitor. Electrochim Acta 284:444–453

    Article  CAS  Google Scholar 

  39. Lu Y, Liu Y, Mo J, Deng B, Wang J, Zhu Y, Xu G (2021) Construction of hierarchical structure of Co3O4 electrode based on electrospinning technique for supercapacitor. J Alloy Compd 853:157271

    Article  CAS  Google Scholar 

  40. Niveditha CV, Aswini R, Fatima MJ, Ramanarayan R, Pullanjiyot N, Swaminathan S (2018) Feather like highly active Co3O4 electrode for supercapacitor application: a potentiodynamic approach. Mater Res Express 5(6):065501

    Article  Google Scholar 

  41. Li G, Chen M, Ouyang Y, Yao D, Lu L, Wang L, Hao Q (2019) Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl Surf Sci 469:941–950

    Article  CAS  Google Scholar 

  42. Gao M, Wang WK, Rong Q, Jiang J, Zhang YJ, Yu HQ (2018) Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl Mater Interfac 10(27):23163–23173

    Article  CAS  Google Scholar 

  43. Abebe EM, Ujihara M (2021) Influence of temperature on ZnO/ Co3O4 nanocomposites for high energy storage supercapacitors. ACS Omega 6(37):23750–23763

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Researcher’s Supporting Project Number (RSP-2021/43), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghulam M. Mustafa or Shahid Atiq.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, S., Ramay, S.M., Mahmood, A. et al. Electrochemical performance of transition metal doped Co3O4 as electrode material for supercapacitor applications. J Sol-Gel Sci Technol 105, 360–369 (2023). https://doi.org/10.1007/s10971-022-06008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06008-3

Keywords

Navigation