Skip to main content
Log in

Preparation and application of Co3O4-Ni-MOF/MWCNTs hybrid for supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Co3O4-Ni-MOF composite was successfully prepared by solvent-thermal method and then was combined with acidified multi-walled carbon nanotubes (MWCNTs); the resulting Co3O4-Ni-MOF/MWCNTs hybrid was applied in supercapacitor and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The electrochemical tests including cyclic voltammetric (CV), galvanostatic charge and discharge (GCD), electrochemical impedance spectroscopy (EIS), and cycle life were also performed to investigate the supercapacitor properties of the as-prepared materials. The experimental results show that when the molar ratio of metal oxide material and Ni-MOF material is 1:1, Co3O4-Ni-MOF material displays better electrochemical performance. As the mass ratio of Co3O4-Ni-MOF and MWCNTs is 1:1, Co3O4-Ni-MOF/MWCNTs hybrid exhibits lower Rct value, higher cyclic capacitance stability, and better supercapacitor performance. Therefore, Co3O4-Ni-MOF/MWCNTs hybrid as an electrode material has a relatively ideal application prospect in terms of supercapacitor materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16:16–22

    Article  Google Scholar 

  2. Saikia BK, Benoy SM, Bora M, Tamuly J, Pandey M, Bhattacharya D (2020) A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 282:118796

    Article  CAS  Google Scholar 

  3. Raza W, Ali F, Raza N, Luo YW, Kim KH, Yang JH, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  4. Nitta N, Wu X, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  5. Shetti NP, Dias S, Reddy KR (2019) Nanostructured organic and inorganic materials for Li-ion batteries: a review. Mat Sci Semicon Proc 104:104684

    Article  CAS  Google Scholar 

  6. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Mater Sci 321:651–652

    CAS  Google Scholar 

  7. Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc 17(1):34–37

    CAS  Google Scholar 

  8. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785

    Article  CAS  Google Scholar 

  9. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  10. Zhu ZZ, Wang GC, Sun MQ, Li XW, Li CZ (2011) Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochem Acta 56:1366–1372

    Article  CAS  Google Scholar 

  11. Huang ZF, Zhao Y, Xu HT, Zhao JZ (2018) Surfactant-free synthesis, photocatalytic and electrochemical property study of Co3O4 nanoparticles. Mater Res Bull 100:83–90

    Article  CAS  Google Scholar 

  12. Schenk AS, Eiben S, Goll M, Reith L, Kulak AN, MeldrumFC JH, Wege C, Ludwigs S (2017) Virus-directed formation of electrocatalytically active nanoparticle-based Co3O4 tubes. Nanoscale 9:6334–6345

    Article  CAS  Google Scholar 

  13. Sidhureddy B, Dondapati JS, Chen AC (2019) Shape-controlled synthesis of Co3O4 for enhanced electrocatalysis of the oxygen evolution reaction. Chem Commun 55:3626–3629

    Article  CAS  Google Scholar 

  14. Padmanathan N, Selladurai S, Razeeb KM (2015) Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte. RSC Adv 5:12700–12709

    Article  CAS  Google Scholar 

  15. Liu LM, Li T, Yi ZC, Chi F, Lin ZD, Zhang XW, Xu K (2019) Conductometric ozone sensor based on mesoporous ultrafine Co3O4 nanobricks. Sensor Actuat B-Chem 297:126815

    Article  CAS  Google Scholar 

  16. Zhou TT, Lu P, Zhang Z, Wang Q, Umar A (2016) Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor. Sensor Actuat B-Chem 235:457–465

    Article  CAS  Google Scholar 

  17. Yan Y, Gu P, Zheng SS, Zheng MB, Pang H, Xue HG (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4:19078–19085

    Article  CAS  Google Scholar 

  18. Yang CY, Li XY, Yu L, Liu XJ, Yang J, Wei MD (2020) A new promising Ni-MOF superstructure for high-performance supercapacitors. Chem Commun 56:1803–1806

    Article  CAS  Google Scholar 

  19. Wu SR, Liu JB, Wang H, Yan H (2019) NiO@ graphite carbon nanocomposites derived from Ni-MOFs as supercapacitor electrodes. Ionics 25:1–8

    Article  Google Scholar 

  20. Chakraborty I, Chakrabarty N, Senapati A, Chakraborty AK (2018) CuO@NiO/Polyaniline/MWCNT nanocomposite as high-performance electrode for supercapacitor. J Phys Chem C 122(48):27180–27190

    Article  CAS  Google Scholar 

  21. Bhagwan J, Hussain SK, Krishna BNV, Yu JS (2021) Facile synthesis of MnMoO4@MWCNT and their electrochemical performance in aqueous asymmetric supercapacitor. J Alloy Compd 856:157874

    Article  CAS  Google Scholar 

  22. Liu WW, Yan XB, Lang JW, Peng C, Xue QJ (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253

    Article  CAS  Google Scholar 

  23. Chen YX, Ni D, Yang XW, Liu CC, Yin JL, Cai KF (2018) Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 278:114–123

    Article  CAS  Google Scholar 

  24. Mansour SE, Chahataray R, Nayak PL (2014) Grafting vinyl monomers onto Mwcnt coupled with chitosan: II: graft coploymerization of ethyleacrylate onto chitosan coupled with multiwalled carbon nano tube. Middle-East J Sci Res 21(11):2130

    Google Scholar 

  25. Yao XC, Kou XC, Qiu J (2016) Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity. Org Electron 38:55–60

    Article  CAS  Google Scholar 

  26. Wang XQ, Yang NN, Li QQ, He F, Yang YF, Wu BH, Chu J, Zhou AN, Xiong SX (2019) Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material. J Solid State Chem 277:575–586

    Article  CAS  Google Scholar 

  27. Wu JQ, Hua WM, Yue YH, Gao Z (2019) g-C3N4 modifed Co3O4 as efcient catalysts for aerobic oxidation of benzyl alcohol. React Kinet Mech Cat 128:109–120

    Article  CAS  Google Scholar 

  28. Liu Y, Xin N, Yang QJ, Shi WD (2021) 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J Colloid Interf Sci 583:288–298

    Article  CAS  Google Scholar 

  29. Yan Y, Gu P, Zheng SS, Zheng MB, Pang H, Xue HG (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mate Chem A 4:19078–19085

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Changzhou Science and Technology Support Plan (Social Development), China (CE20205052), the National Natural Science Foundation of China (Grant Nos. 21978026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijuan Xie or Shiping Luo.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chen Zhang and Qing Wang equal contribution to this work and should be regarded as first joint authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, Q., Zhang, W. et al. Preparation and application of Co3O4-Ni-MOF/MWCNTs hybrid for supercapacitor. Ionics 27, 3543–3551 (2021). https://doi.org/10.1007/s11581-021-04137-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04137-3

Keywords

Navigation