Skip to main content

Advertisement

Log in

Photocatalytic removal of persistent pollutants using eco-friendly ZnO

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The heterogeneous photocatalysis process using ZnO has played an important role in the elimination of emerging contaminants in aqueous media. In this context, this work aimed to synthesize a ZnO-based photocatalyst obtained through an alternative sol-gel route using cassava starch as a polymerizing agent and apply it in a photocatalytic system to remove persistent pollutants in an aqueous medium. The material obtained was characterized by different techniques. XRD results show that it is a high crystalline catalyst with peaks characteristic of ZnO, while FTIR proves that cassava starch was a crucial chelating agent in the synthesis. The band gap value of the catalyst was 3.06 eV, which comprises the visible light spectrum, resulting in an optical improvement of the photocatalyst. The material was used in a tartrazine yellow dye removal system, and the influence of process parameters was investigated. Through kinetics, the optimal removal point was determined at [Cat]0 = 0.5 g L−1, [TY]0 = 10 mg L−1, pH = 12 and oxygenation, which reached 94% removal efficiency of the dye in 180 min of reaction. The chemical parameters COD and TOC confirmed the mineralization of the TY dye, resulting in 89% and 80% reduction, respectively. Thus, the results of this study demonstrate that the synthesis method shows the potential of this material as a sustainable and low-cost photocatalyst.

Graphical abstract

Highlights

  • An eco-friendly ZnO photocatalyst was synthesized and characterized.

  • Cassava starch acted as a chelating agent in obtaining ZnO.

  • The photocatalyst achieved 94% dye removal in 180 min at basic pH.

  • Dye degradation followed first-order kinetics with k = 0.0179 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vaiano V, Matarangolo M, Murcia JJ et al. (2018) Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl Catal B Environ 225:197–206. https://doi.org/10.1016/j.apcatb.2017.11.075

    Article  CAS  Google Scholar 

  2. Min YL, Zhang K, Zhao W et al. (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem Eng J 193–194:203–210. https://doi.org/10.1016/J.CEJ.2012.04.047

    Article  Google Scholar 

  3. Gu X, Li C, Yuan S et al. (2016) ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology 27:402001. https://doi.org/10.1088/0957-4484/27/40/402001

    Article  CAS  Google Scholar 

  4. Huang MH, Wu Y, Feick H et al. (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

    Article  CAS  Google Scholar 

  5. Aldeen TS, Ahmed Mohamed HE, Maaza M (2022) ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids 160:110313. https://doi.org/10.1016/j.jpcs.2021.110313

    Article  CAS  Google Scholar 

  6. Abdullah FH, Bakar NHHA, Bakar MA (2022) Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J Hazard Mater 424:127416. https://doi.org/10.1016/j.jhazmat.2021.127416

    Article  CAS  Google Scholar 

  7. Bharathi D, AlSalhi MS, Devanesan S et al. (2022) Photocatalytic degradation of Rhodamine B using green-synthesized ZnO nanoparticles from Sechium edule polysaccharides. Appl Nanosci 12:2477–2487. https://doi.org/10.1007/s13204-022-02502-w

    Article  CAS  Google Scholar 

  8. Araujo FP, Trigueiro P, Honório LMC et al. (2020) Eco-friendly synthesis and photocatalytic application of flowers-like ZnO structures using Arabic and Karaya Gums. Int J Biol Macromol 165:2813–2822. https://doi.org/10.1016/j.ijbiomac.2020.10.132

    Article  CAS  Google Scholar 

  9. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551. https://doi.org/10.1016/J.RSER.2017.08.020

    Article  CAS  Google Scholar 

  10. Sampaio DV, Silva MS, Souza NRS et al. (2018) Electrical characterization of BaTiO3 and Ba0.77Ca0.23TiO3 ceramics synthesized by the proteic sol-gel method. Ceram Int 44:15526–15530. https://doi.org/10.1016/J.CERAMINT.2018.05.213

    Article  CAS  Google Scholar 

  11. Khorsand Zak A, Abd, Majid WH, Mahmoudian MR et al. (2013) Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv Powder Technol 24:618–624. https://doi.org/10.1016/J.APT.2012.11.008

    Article  CAS  Google Scholar 

  12. Ferreira NS, Angélica RS, Marques VB et al. (2016) Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles. Mater Lett 165:139–142. https://doi.org/10.1016/j.matlet.2015.11.107

    Article  CAS  Google Scholar 

  13. Lahariya V, Pandey KK, Dhoble SJ (2021) Structural characterization of starch capped ZnO nanoparticles. J Phys Conf Ser 1913:8–14. https://doi.org/10.1088/1742-6596/1913/1/012043

    Article  CAS  Google Scholar 

  14. Cao Y, Bian X, Luo S et al. (2022) Synthesis and characterization of the starch-ZnO hybrid nanoparticles: effect of the amylose content. Starch/Staerke 2100256:1–7. https://doi.org/10.1002/star.202100256

    Article  CAS  Google Scholar 

  15. Ma J, Zhu W, Tian Y, Wang Z (2016) Preparation of zinc oxide-starch nanocomposite and its application on coating. Nanoscale Res Lett 11: https://doi.org/10.1186/s11671-016-1404-y

  16. Lopes de Almeida W, Ferreira NS, Rodembusch FS, Caldas de Sousa V (2021) Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route. Mater Chem Phys 258:123926. https://doi.org/10.1016/j.matchemphys.2020.123926

    Article  CAS  Google Scholar 

  17. Almeida WL, de, Rodembusch FS, Ferreira NS, Caldas de Sousa V (2020) Eco-friendly and cost-effective synthesis of ZnO nanopowders by Tapioca-assisted sol-gel route. Ceram Int 46:10835–10842. https://doi.org/10.1016/j.ceramint.2020.01.095

    Article  CAS  Google Scholar 

  18. Fiorito S, Epifano F, Palumbo L et al. (2022) Efficient removal of tartrazine from aqueous solutions by solid sorbents. Sep Purif Technol 290:120910. https://doi.org/10.1016/J.SEPPUR.2022.120910

    Article  CAS  Google Scholar 

  19. Senthil Rathi B, Senthil Kumar P (2022) Sustainable approach on the biodegradation of azo dyes: A short review. Curr Opin Green Sustain Chem 33:100578. https://doi.org/10.1016/j.cogsc.2021.100578

    Article  CAS  Google Scholar 

  20. Zhang L, Sellaoui L, Franco D et al. (2020) Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: Analytical interpretation via multilayer statistical physics model. Chem Eng J 382:122952. https://doi.org/10.1016/J.CEJ.2019.122952

    Article  CAS  Google Scholar 

  21. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  22. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  23. Regalbuto JR, Robles JO (2004) The Engineering of Pt/Carbon Catalyst Preparation. University of Illinois, Chicago, 13

    Google Scholar 

  24. APHA APHA (1999) Standard methods for the examination for water and wastewater, 20th ed. Washington, DC

  25. Thommes M, Kaneko K, Neimark AVet al

  26. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218. https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  27. da Silva PL, Nippes RP, Macruz PD et al. (2021) Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite. Water Sci Technol 84:763–776. https://doi.org/10.2166/wst.2021.265

    Article  CAS  Google Scholar 

  28. Moradi H, Eshaghi A, Hosseini SR, Ghani K (2016) Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason Sonochem 32:314–319. https://doi.org/10.1016/j.ultsonch.2016.03.025

    Article  CAS  Google Scholar 

  29. Manjunath K, Ravishankar TN, Kumar D et al. (2014) Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications. Mater Res Bull 57:325–334. https://doi.org/10.1016/j.materresbull.2014.06.010

    Article  CAS  Google Scholar 

  30. Gharagozlou M, Naghibi S (2016) Sensitization of ZnO nanoparticle by vitamin B12: Investigation of microstructure, FTIR and optical properties. Mater Res Bull 84:71–78. https://doi.org/10.1016/j.materresbull.2016.07.029

    Article  CAS  Google Scholar 

  31. Maya-Treviño ML, Villanueva-Rodríguez M, Guzmán-Mar JL et al. (2015) Comparison of the solar photocatalytic activity of ZnO–Fe2O3 and ZnO–Fe0 on 2,4-D degradation in a CPC reactor. Photochem Photobio Sci 14:543–549. https://doi.org/10.1039/C4PP00274A

    Article  CAS  Google Scholar 

  32. Castro VC, Paris EC (2017) Síntese e caracterização de óxido de zinco pelo método de sol-gel. Embrapa Instrumentação. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1081605/sintese-e-caracterizacao-de-oxido-de-zinco-pelo-metodo-desol-gel

  33. Peres GL, Leite DC, da Silveira NP (2016) Study of complexes formation between transition metal ions and amylopectin in DMSO/H2O solution. Starch/Staerke 68:1129–1138. https://doi.org/10.1002/star.201500364

    Article  CAS  Google Scholar 

  34. Abed C, Bouzidi C, Elhouichet H et al. (2015) Mg doping induced high structural quality of sol-gel ZnO nanocrystals: Application in photocatalysis. Appl Surf Sci 349:855–863. https://doi.org/10.1016/J.APSUSC.2015.05.078

    Article  CAS  Google Scholar 

  35. Ciciliati MA, Silva MF, Fernandes DM et al. (2015) Fe-doped ZnO nanoparticles: Synthesis by a modified sol-gel method and characterization. Mater Lett 159:84–86. https://doi.org/10.1016/J.MATLET.2015.06.023

    Article  CAS  Google Scholar 

  36. Ba-Abbad MM, Kadhum AAH, Bakar Mohamad A et al. (2013) The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. J Alloy Compd 550:63–70. https://doi.org/10.1016/J.JALLCOM.2012.09.076

    Article  CAS  Google Scholar 

  37. Murugadoss G (2012) Synthesis and characterization of transition metals doped ZnO nanorods. J Mater Sci Technol 28:587–593. https://doi.org/10.1016/S1005-0302(12)60102-9

    Article  CAS  Google Scholar 

  38. Zaaboub Z, Hassen F, Chaabane L, Maaref H (2021) Photoluminescence and time-resolved photoluminescence properties in as grown ZnO thin films prepared by DC reactive sputtering for optoelectronic devices. Microelectron J 114:105153. https://doi.org/10.1016/J.MEJO.2021.105153

    Article  CAS  Google Scholar 

  39. Gupta J, Hassan PA, Barick KC (2021) Structural, photoluminescence, and photocatalytic properties of Mn and Eu co-doped ZnO nanoparticles. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.837

  40. Khudiar SS, Nayef UM, Mutlak FAH, Abdulridha SK (2022) Characterization of NO2 gas sensing for ZnO nanostructure grown hydrothermally on porous silicon. Optik 249:168300. https://doi.org/10.1016/J.IJLEO.2021.168300

    Article  CAS  Google Scholar 

  41. Ramasami AK, Raja Naika H, Nagabhushana H et al. (2015) Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles. Mater Charact 99:266–276. https://doi.org/10.1016/J.MATCHAR.2014.11.017

    Article  CAS  Google Scholar 

  42. Mahmoud ME, Abdelfattah AM, Tharwat RM, Nabil GM (2020) Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: Optimization, kinetics, and thermodynamic study. J Mol Liq 318:114297. https://doi.org/10.1016/J.MOLLIQ.2020.114297

    Article  CAS  Google Scholar 

  43. Piedra López JG, González Pichardo OH, Pinedo Escobar JA et al. (2021) Photocatalytic degradation of metoprolol in aqueous medium using a TiO2/natural zeolite composite. Fuel 284:119030. https://doi.org/10.1016/j.fuel.2020.119030

    Article  CAS  Google Scholar 

  44. Nippes RP, Frederichi D, Olsen Scaliante. MHN (2021) Enhanced photocatalytic performance under solar radiation of ZnO through hetero-junction with iron functionalized zeolite. J Photochem Photobiol A Chem 418: https://doi.org/10.1016/j.jphotochem.2021.113373

  45. Nezamzadeh-Ejhieh A, Hushmandrad S (2010) Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl Catal A Gen 388:149–159. https://doi.org/10.1016/j.apcata.2010.08.042

    Article  CAS  Google Scholar 

  46. Bouarroudj T, Aoudjit L, Djahida L et al. (2021) Photodegradation of tartrazine dye favored by natural sunlight on pure and (Ce, Ag) co-doped ZnO catalysts. Water Sci Technol 83:2118–2134. https://doi.org/10.2166/wst.2021.106

    Article  CAS  Google Scholar 

  47. Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci Total Environ 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222

    Article  CAS  Google Scholar 

  48. Tiburtius ERL, Peralta-Zamora P, Emmel A (2009) Degradação de benzeno, tolueno e xilenos em águas contaminadas por gasolina, utilizando-se processos foto-Fenton. Quim Nova 32:2058–2063. https://doi.org/10.1590/S0100-40422009000800014

    Article  CAS  Google Scholar 

  49. Gupta VK, Jain R, Nayak A et al. (2011) Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C 31:1062–1067. https://doi.org/10.1016/j.msec.2011.03.006

    Article  CAS  Google Scholar 

  50. Dalponte I, Mathias AL, Jorge RMM, Weinschutz R (2016) Degradação fotocatalítica de tartrazina com TiO2 imobilizado em esferas de alginato. Quim Nova 39:1165–1169. https://doi.org/10.21577/0100-4042.20160141

    Article  CAS  Google Scholar 

  51. Sohrabi MR, Ghavami M (2010) Comparison of Direct Yellow 12 dye degradation efficiency using UV/semiconductor and UV/H2O2/semiconductor systems. Desalination 252:157–162. https://doi.org/10.1016/j.desal.2009.10.009

    Article  CAS  Google Scholar 

  52. Jiménez-Tototzintle M, Oller I, Hernández-Ramírez A et al. (2015) Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis. Chem Eng J 273:205–213. https://doi.org/10.1016/J.CEJ.2015.03.060

    Article  Google Scholar 

  53. Lanao M, Ormad MP, Mosteo R, Ovelleiro JL (2012) Inactivation of Enterococcus sp. by photolysis and TiO2 photocatalysis with H2O2 in natural water. Sol Energy 86:619–625. https://doi.org/10.1016/J.SOLENER.2011.11.007

    Article  CAS  Google Scholar 

  54. Skinner AW, Dibernardo AM, Masud AM et al. (2020) Factorial design of experiments for optimization of photocatalytic degradation of tartrazine by zinc oxide (ZnO) nanorods with different aspect ratios. J Environ Chem Eng 8:104235. https://doi.org/10.1016/J.JECE.2020.104235

    Article  CAS  Google Scholar 

  55. Zeghioud H, Kamagate M, Coulibaly LS et al. (2019) Photocatalytic degradation of binary and ternary mixtures of antibiotics: reactive species investigation in pilot scale. Chem Eng Res Des 144:300–309. https://doi.org/10.1016/j.cherd.2019.02.015

    Article  CAS  Google Scholar 

  56. Bagheri S, Termehyousefi A, Do TO (2017) Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics, and mechanism approach. Catal Sci Technol 7:4548–4569. https://doi.org/10.1039/c7cy00468k

    Article  CAS  Google Scholar 

  57. Macías-Sánchez JJ, Hinojosa-Reyes L, Caballero-Quintero A et al. (2015) Synthesis of nitrogen-doped ZnO by sol-gel method: Characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides. Photochem Photobio Sci 14:536–542. https://doi.org/10.1039/c4pp00273c

    Article  Google Scholar 

  58. Nobre FX, Mariano FAF, Santos FEP et al. (2019) Heterogeneous photocatalysis of Tordon 2,4-D herbicide using the phase mixture of TiO2. J Environ Chem Eng 7:103501. https://doi.org/10.1016/j.jece.2019.103501

    Article  CAS  Google Scholar 

  59. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobio A Chem 162:317–322. https://doi.org/10.1016/S1010-6030(03)00378-2

    Article  CAS  Google Scholar 

  60. Tu VA, Tuan VA (2018) A facile and fast solution chemistry synthesis of porous ZnO nanoparticles for high efficiency photodegradation of tartrazine. Vietnam J Chem 56:214–219. https://doi.org/10.1002/vjch.201800016

    Article  CAS  Google Scholar 

  61. PubChem (2022) Compound Summary-Tartrazine. https://pubchem.ncbi.nlm.nih.gov/

  62. Chai HY, Lam SM, Sin JC (2019) Green synthesis of ZnO nanoparticles using Hibiscus rosa-sinensis leaves extracts and evaluation of their photocatalytic activities. AIP Conf Proc 2157: https://doi.org/10.1063/1.5126577

  63. Stan M, Popa A, Toloman D et al. (2015) Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater Sci Semicond Process 39:23–29. https://doi.org/10.1016/j.mssp.2015.04.038

    Article  CAS  Google Scholar 

  64. Osuntokun J, Onwudiwe DC, Ebenso EE (2019) Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chem Lett Rev 12:444–457. https://doi.org/10.1080/17518253.2019.1687761

    Article  CAS  Google Scholar 

  65. Nguyen DTC, Le HTN, Nguyen TT et al. (2021) Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J Hazard Mater 420:126586. https://doi.org/10.1016/j.jhazmat.2021.126586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq) [Proc. 159371/2019-8], Fundação Araucaria (FA-PR) for the RENEWABLE HYDROCARBONET (NAPI-HCR) project.

Authors contributions

CRediT authorship contribution statement: PDM: Investigation, Methodology, Validation, Writing-original draft, RPN: Investigation, Validation, Writing-original draft, LMMJ: Supervision, Writing-review & editing. OAAS: Resources, Supervision, Writing-review & editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Derksen Macruz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macruz, P.D., Nippes, R.P., de Matos Jorge, L.M. et al. Photocatalytic removal of persistent pollutants using eco-friendly ZnO. J Sol-Gel Sci Technol 104, 387–400 (2022). https://doi.org/10.1007/s10971-022-05949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05949-z

Keywords

Navigation