Skip to main content
Log in

Synthesis, characterization, thermal, and antibacterial activity studies on MgO powders

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, MgO particles were synthesized via sol–gel technique and calcined at 600 °C for 2 h with heating rates of 2, 5, 10, and 20 °C/min, respectively, for the first time. Comprehensive characterizations were performed by TGA-DTA, XRD, SEM, Raman spectroscopy, BET analysis, photoluminescence techniques. The kinetic parameters were determined by employing four popular model-free methods: Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sonuse (KAS), Starink, and Tang methods. MgO powders had a high crystalline structure regardless of different heating rates based on XRD results. Surface morphologies and surface areas of MgO powders did not change with heating rates. Surface morphologies of MgO powders were found to be nearly spherical with some rounded shape and exhibiting faceted edges in some regions. The specific surface area of MgO powders was found to be 5.9179, 5.6883, 3.6617, and 4.1942 m2/g with increasing heating rate, respectively. According to Raman analysis, MgO particles produced at 2 °C/min possessed higher surface defects like oxygen vacancies. The PL emission signals for MgO particles were observed at ~500 nm consisting of broad peaks, which might be attributed to oxygen defects on the surface of particles. The antibacterial performances of MgO particles were carried out against gram-negative E. coli and gram-positive B. subtilis by means of the agar disc diffusion method. MgO particles produced at a heating rate of 2 °C/min possessed the biggest inhibition zone against gram-positive B. subtilis. Having better antibacterial performances for MgO particles produced at 2 °C/min heating rate might be attributed to surface oxygen vacancies and surface area, which led to the generation of more reactive oxygen species (ROS).

Highlights

  • MgO powders were fabricated by the sol–gel process with different heating rates.

  • The effect of the heating rate on structure, morphology, and antibacterial activity was investigated.

  • Non-isothermal and thermodynamic parameters of MgO powders were studied.

  • MgO sample prepared at 2 °C/min heating rate exhibited the best antibacterial performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrobial Agents 49:137–152

    Article  CAS  Google Scholar 

  2. Wong CW, Chan YS, Jeevanandam J, Pal K, Bechelany M, Abd Elkodous M, El-Sayyad GS (2020) Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities. J Clust Sci 31:367–389

    Article  CAS  Google Scholar 

  3. Srivastava V, Sharma YC, Sillanpää M (2015) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int 41:6702–6709

    Article  CAS  Google Scholar 

  4. Savita JainM, Manju, Vij A, Thakur A (2019) Impact of annealing on the structural properties of MgO nanoparticles by XRD analysis and Rietveld refinement. AIP Conf Proc 2093:020024

    Article  CAS  Google Scholar 

  5. Rao Y, Wang W, Tan F, Cai Y, Lu J, Qiao X (2013) Influence of different ions doping on the antibacterial properties of MgO nanopowders. Appl Surf Sci 284:726–731

    Article  CAS  Google Scholar 

  6. Jin X, Yuan K, Lin X, Wang X, Zhang G, Zhu L, Que N, Xu D (2018) Effects of water vapor on the crystallization and microstructure manipulation of MgO ceramic fibers. Ceram Int 44:5257–5265

    Article  CAS  Google Scholar 

  7. Yang C, Wang Y, Fan H, de Falco G, Yang S, Shangguan J, Bandosz TJ (2020) Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation. Appl Catal B: Environ 266:118674

    Article  CAS  Google Scholar 

  8. Demirci S, Öztürk B, Yildirim S, Bakal F, Erol M, Sancakoğlu O, Yigit R, Celik E, Batar T (2015) Synthesis and comparison of the photocatalytic activities of flame spray pyrolysis and sol–gel derived magnesium oxide nano-scale particles. Mater Sci Semicond Process 34:154–161

    Article  CAS  Google Scholar 

  9. Shafiee H, Salehirad A, Samimi A (2020) Effect of synthesis method on structural and physical properties of MgO/MgAl2O4 nanocomposite as a refractory ceramic. Appl Phys A 126:198

    Article  CAS  Google Scholar 

  10. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2019) Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J Photochem Photobiol B: Biol 190:8–20

    Article  CAS  Google Scholar 

  11. Srisuvetha VT, Rayar SL, Shanthi G (2020) Role of cerium (Ce) dopant on structural, optical and photocatalytic properties of MgO nanoparticles by wet chemical route. J Mater Sci: Mater Electron 31:2799–2808

    CAS  Google Scholar 

  12. Cai Y, Li C, Wu D, Wang W, Tan F, Wang X, Wong PK, Qiao X (2017) Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem Eng J 312:158–166

    Article  CAS  Google Scholar 

  13. El-Shaer A, Abdelfatah M, Mahmoud KR, Momay S, Eraky MR (2020) Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity. J Alloy Compd 817:152799

    Article  CAS  Google Scholar 

  14. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng: C 44:278–284

    Article  CAS  Google Scholar 

  15. Anicˇić N, Vukomanović M, Koklicˇ T, Suvorov D (2018) Fewer defects in the surface slows the hydrolysis rate, decreases the ROS generation potential, and improves the non-ROS antimicrobial activity of MgO. Small 14:1800205

    Article  CAS  Google Scholar 

  16. Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan CMN, Guo MY, Ng YH, Djurišić AB, Lee PKH, Chan WK, Yu LH, Phillips DL, Ma APY, Leung FCC (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183

    Article  CAS  Google Scholar 

  17. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173

    Article  CAS  Google Scholar 

  18. Ning P, Zhang F, Wang LJ, Zhou Y, Wang YJ, Wu YY, Fu T (2020) Sol–gel derived AgMgO films for antibacterial and bioactive surface modification of niobium metal. Mater Chem Phys 243:122646

    Article  CAS  Google Scholar 

  19. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  20. Sabbaghan M, Sofalgar P, Zarinejad M (2020) Ionic liquid-based controllable synthesis of MgO nanostructures for high specific surface area. Ceram Int 46:6940–6944

    Article  CAS  Google Scholar 

  21. Yan X, Tian Z, Peng W, Zhang J, Tong Y, Li J, Sun D, Ge H, Zhang J (2020) Synthesis of nano-octahedral MgO via a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions. RSC Adv 10:10681–10688

    Article  CAS  Google Scholar 

  22. Rao LS, Rao TV, Naheed S, Rao PV (2018) Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation. Mater Chem Phys 203:133–140

    Article  CAS  Google Scholar 

  23. Karthik K, Dhanuskodi S, Prabu Kumar S, Gobinath C, Sivaramakrishnan S (2017) Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett 206:217–220

    Article  CAS  Google Scholar 

  24. Lu X, Kanamori K, Nakanishi K (2019) Synthesis of hierarchically porous MgO monoliths with continuous structure via sol–gel process accompanied by phase separation. J Sol-Gel Sci Technol 89:29–36

    Article  CAS  Google Scholar 

  25. Li S (2019) Combustion synthesis of porous MgO and its adsorption properties. Int J Ind Chem 10:89–96

    Article  CAS  Google Scholar 

  26. Aničić N, Vukomanović M, Suvorov D (2016) The nano-texturing of MgO microrods for antibacterial applications. RSC Adv 6:102657–102664

    Article  CAS  Google Scholar 

  27. Cai Y, Wu D, Zhu X, Wang W, Tan F, Chen J, Qiao X, Qiu X (2017) Sol–gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceram Int 43:1066–1072

    Article  CAS  Google Scholar 

  28. Wang Y, Cen C, Chen J, Fu L (2020) MgO/carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydr Polym 236:116078

    Article  CAS  Google Scholar 

  29. Jeevanandam J, Chan YS, Danquah M (2019) Effect of gelling agent and calcination temperature in sol–gel synthesized MgO nanoparticles. Prot Met. Phys Chem 55:288–301

    Google Scholar 

  30. Dikici T, Demirci S, Tünçay MM, Yildirim BK, Kaya N (2021) Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: thermal kinetic and thermodynamic studies. J Sol-Gel Sci Technol 97:622–637

    Article  CAS  Google Scholar 

  31. Demirci S, Dikici T, Tünçay MM, Kaya N (2020) A study of heating rate effect on the photocatalytic performances of ZnO powders prepared by sol–gel route: Their kinetic and thermodynamic studies. Appl Surf Sci 507:145083

    Article  CAS  Google Scholar 

  32. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33

    Article  CAS  Google Scholar 

  33. Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642

    Article  CAS  Google Scholar 

  34. Takeo O (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  35. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  36. Flynn JH (1983) The isoconversional method for determination of energy of activation at constant heating rates. J Therm Anal 27:95–102

    Article  CAS  Google Scholar 

  37. Huang J-W, Chang C-C, Kang C-C, Yeh M-Y (2008) Crystallization kinetics and nucleation parameters of Nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta 468:66–74

    Article  CAS  Google Scholar 

  38. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  39. Chaiwang P, Chalermsinsuwan B, Piumsomboon P (2016) Thermogravimetric analysis and chemical kinetics for regeneration of sodium and potassium carbonate solid sorbents. Chem Eng Commun 203:581–588

    Article  CAS  Google Scholar 

  40. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  41. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43

    Article  CAS  Google Scholar 

  42. Pourmortazavi SM, Mirzajani V, Farhadi K (2019) Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim 137:93–104

    Article  CAS  Google Scholar 

  43. Madhusudanan PM, Krishnan K, Ninan KN (1993) New equations for kinetic analysis of non-isothermal reactions. Thermochim Acta 221:13–21

    Article  CAS  Google Scholar 

  44. Mahmood A, Tezcan F, Kardaş G (2018) Thermal decomposition of sol–gel derived Zn0.8Ga0.2O precursor-gel: a kinetic, thermodynamic, and DFT studies. Acta Materialia 146:152–159

    Article  CAS  Google Scholar 

  45. Zhao X, Yang H, Wu P, Huang X, Wang X (2019) The preparation of MgO nanopowders synthesized via an improved polyacrylamide gel method. RSC Adv 9:14893–14898

    Article  CAS  Google Scholar 

  46. Rani N, Chahal S, Chauhan AS, Kumar P, Shukla R, Singh SK (2019) X-ray analysis of MgO nanoparticles by modified Scherer’s Williamson-Hall and size-strain method. Mater Today: Proc 12:543–548

    CAS  Google Scholar 

  47. Umaralikhan L, Jamal Mohamed Jaffar M (2018) Green synthesis of MgO nanoparticles and it antibacterial activity. Iran J Sci Technol, Trans A: Sci 42:477–485

    Article  Google Scholar 

  48. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  49. Du L, Li Z, Ding S, Chen C, Qu S, Yi W, Lu J, Ding J (2019) Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil. Fuel 258:116122

    Article  CAS  Google Scholar 

  50. Hao Y-j, Liu B, Tian L-g, Li F-t, Ren J, Liu S-j, Liu Y, Zhao J, Wang X-j (2017) Synthesis of {111} facet-exposed MgO with surface oxygen vacancies for reactive oxygen species generation in the dark. ACS Appl Mater Interfaces 9:12687–12693

    Article  CAS  Google Scholar 

  51. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22:24610–24617

    Article  CAS  Google Scholar 

  52. Escobar-Alarcón L, Klimova T, Escobar-Aguilar J, Romero S, Morales-Ramírez C, Solís-Casados D (2013) Preparation and characterization of Al2O3–MgO catalytic supports modified with lithium. Fuel 110:278–285

    Article  CAS  Google Scholar 

  53. Singh RK, Upadhyaya KS (1972) Crystal dynamics of magnesium oxide. Phys Rev B 6:1589–1596

    Article  CAS  Google Scholar 

  54. Jaffari GH, Tahir A, Bah M, Ali A, Bhatti AS, Shah SI (2015) Study of surface-active modes and defects in single-phase Li-incorporated MgO nanoparticles. J Phys Chem C 119:28182–28189

    Article  CAS  Google Scholar 

  55. Sellaiyan S, Uedono A, Sivaji K, Janet Priscilla S, Sivasankari J, Selvalakshmi T (2016) Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy. Appl Phys A 122:920

    Article  CAS  Google Scholar 

  56. Balakrishnan G, Velavan R, Mujasam Batoo K, Raslan EH (2020) Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys 16:103013

    Article  Google Scholar 

  57. Arshad A, Iqbal J, Siddiq M, Mansoor Q, Ismail M, Mehmood F, Ajmal M, Abid Z (2017) Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites. J Appl Phys 121:024901

    Article  CAS  Google Scholar 

  58. Thamilvanan D, Jeevanandam J, Hii YS, Chan YS (2021) Sol–gel coupled ultrasound synthesis of photo-activated magnesium oxide nanoparticles: optimization and antibacterial studies. Can J Chem Eng 99:502–518

    Article  CAS  Google Scholar 

  59. Bhattacharya P, Dey A, Neogi S (2021) An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J Mater Chem B 9:5329–5339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Marmara University and Katip Çelebi University for infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Demirci.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., Yildirim, B.K., Tünçay, M.M. et al. Synthesis, characterization, thermal, and antibacterial activity studies on MgO powders. J Sol-Gel Sci Technol 99, 576–588 (2021). https://doi.org/10.1007/s10971-021-05609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05609-8

Keywords

Navigation