Skip to main content
Log in

Development of dip-coated Cu2ZnSnS4 absorber material without sulphurisation

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Quaternary semiconductor Cu2ZnSnS4 absorber material was synthesized by the sol-gel method deposited by the dip-coating technique on ordinary glass substrates. In this study, we have investigated the effects of dip-coating cycle at different cycles: 2, 4 and 6, and annealing temperature at various temperatures: 300, 325 and 375 °C on the structural, morphological compositional, optical and electrical properties. The films have been characterized by different characterization techniques such as X-ray diffractometer (XRD), Raman scattering experiments, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), UV–visible spectrophotometer and four-point probe method. XRD patterns indicated kesterite CZTS with preferential orientation along (112) plane, Cu2-xS, SnS2 and SnS secondary phases were observed with CZTS phase in some samples. The pure CZTS phase was formed for the sample annealed at 375 °C and sample deposited at 2 cycles. Raman spectroscopy confirmed the presence of CZTS thin films in all samples using Raman characteristic peak at 332 cm−1. EDS analysis showed near-stoichiometric CZTS thin films. (SEM) images showed the uniform and dense surfaces morphologies. The gap energy is estimated from absorbance data by using absorption spectra fitting (ASF). The optical band gap decreases with the increasing of dip-coating cycle in the range of 1.33–1.44 ∓ 0.01 eV and also increases with the increasing of annealing temperature in the range of 1.38–1.47 ∓ 0.01 eV. The electrical sheet resistance increased from 2.60 ∓ 0.01 to 4.67 ∓ 0.01 × 103 (Ω/square) when the annealing temperature increased and decreased when the dip-coating cycle increased in range of 0.99 ∓ 0.01 and 1.19 ∓ 0.01 × 103 (Ω/square). These characteristics are suitable for solar cells applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kato T, Wu J-L, Hirai Y, Sugimoto H, Bermudez V (2018) IEEE J Photovolt 9(1):325–330

    Article  Google Scholar 

  2. Kotbi A, Hartiti B, Fadili S, Ridah A, Thevenin P (2016) Opt Quant Electron 48(13):524

    Article  Google Scholar 

  3. Tsai H-W, Chen C-W, Thomas SR, Hsu C-H, Tsai W-C, Chen Y-Z, Wang Y-C, Wang ZM, Hong H-F, Chueh Y-L (2016) Sci Rep. 6:19102

    Article  CAS  Google Scholar 

  4. Ito K, Nakazawa T (1988) Jpn J Appl Phys 27(11):2094–2097

    CAS  Google Scholar 

  5. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014) Adv Energy Mater 4:1–5

    Article  Google Scholar 

  6. Shockley W, Queisser HJ (1961) J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  7. Kim C, Hong S (2017) Mol Cryst Liq Cryst 645:217–224

    Article  CAS  Google Scholar 

  8. Tang A, Li Z, Wang F, Dou M, Pan Y, Guan J (2017) J Appl Surf Sci 402:70–77

    Article  CAS  Google Scholar 

  9. Jheng B-T, Liu P-T, Wu M-C (2014) Sol EnergyMaterials SolarCells 128:275–282

    CAS  Google Scholar 

  10. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guhaa S (2010) Appl Phys Lett 97(14):143508–143508-3

    Article  Google Scholar 

  11. Moholkar AV, Shinde SS, Babar AR, Sim K-U, Kwon Y-B, Rajpure KY, Patil PS, Bhosale CH, Kim JH (2011) Sol Energy 85:1354–1363

    Article  CAS  Google Scholar 

  12. Arvid Schubert B, Marsen B, Cinque S, Unold T, Klenk R, Schorr S (2011) Prog Photovolt: Res Appl 19:93–96

    Article  Google Scholar 

  13. Mali SS, Shinde PravinS, Betty CA, Bhosale PN, Oh YW, Patil PS (2012) J Phys Chem Solids 73:735–740

    Article  CAS  Google Scholar 

  14. Mkawi EM, Al-Hadeethi Y, Shalaan E, Bekyarova E (2018) J Mater Sci: Mater Electron 29:20476–20484

    CAS  Google Scholar 

  15. Ziti A, Hartiti B, Labrim H, Fadili S, Ridah A, Belhorma B, Tahri M, Thevenin P (2019) Superlattices Microstructures 127:191–200

    Article  CAS  Google Scholar 

  16. Ziti A, Hartiti B, Labrim H, Fadili S, Nkuissi HT, Ridah A, Tahri M, Thevenin P (2019) Appl Phys A 125(3):218

    Article  CAS  Google Scholar 

  17. Agawane GL, Kamble AS, Vanalakar SA, Shin SW, Gang MG, Yun JH, Gwak J, Moholkar AV, Kim JH (2015) Mater Lett 158:58–61

    Article  CAS  Google Scholar 

  18. Patel K, Kheraj V, Shah DV, Panchal CJ, Dhere NG (2015) J Alloy Compd 663:842–847

    Article  Google Scholar 

  19. Hosseinpour R, Izadifard M, Ghazi ME, Bahramian B (2018) J Electron Mater 47:1080–1090

    Article  CAS  Google Scholar 

  20. Ansari MZ, Khare N (2014) J Phys D: Appl Phys 47:185101. (6pp)

    Article  Google Scholar 

  21. Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Raj Mehta B (2016) Sol Energy Mater Sol Cells 157:820–830

    Article  CAS  Google Scholar 

  22. Bakr NA, Khodair ZT, Abdul Hassan SM (2015) Res J Chem Sci 5(10):51–61

    CAS  Google Scholar 

  23. Kibasomba PM, Dhlamini S, Maaza M, Liu Ch-P, Rashad MM, Rayan DA, Mwakikunga, BW (2018) Results Phys 9:628–635

    Article  Google Scholar 

  24. Bakr NA, Salman SA, Hameed, SA (2018) Int J Appl Eng Res, 13(6):3379–3388

    Google Scholar 

  25. Fernandes PA, Salom´e PMP, da Cunha AF (2011) J Alloy Compd 509:7600–7606

    Article  CAS  Google Scholar 

  26. Parkin IP, Price LS, Hibbert TG, Molloy KC (2001) J Mater Chem 11:1486–1490

    Article  CAS  Google Scholar 

  27. Lund EA, Du H, Hlaing WM, O O, Teeter G, Scarpulla MA (2014) J Appl Phys 115:173503

    Article  Google Scholar 

  28. Chandel T, Thakur V, Halaszova S, Prochazka M, Haško D, Velic D, Poolla R (2018) J Electron Mater 47(8):5477–5487

    Article  CAS  Google Scholar 

  29. Guc M, Levcenko S, Bodnar I.V, Izquierdo-Roca V, Fontane X, Volkova L.V, Arushanov E, P-Rodríguez A (2016) Sci Rep 6:19414

    Article  CAS  Google Scholar 

  30. Nkuissi Tchognia JH, Hartiti B, Ridah A, Ndjaka J-M, Thevenin P (2016) Optical Mater 57:85–92

    Article  CAS  Google Scholar 

  31. Diwate K, Mohite K, Shinde M, Rondiya S, Pawbake A, Dated A, Pathane H, Jadkare S (2017) Energy Procedia 110:180–187

    Article  CAS  Google Scholar 

  32. Ansari MZ, Munjal S, Khare N (2018) Thin Solid Films 657:95–100

    Article  CAS  Google Scholar 

  33. Truong Mau T, Kim H (2012) J Ceram Process Res 13(3):301–304

    Google Scholar 

  34. Bakr NA, Khodair ZT, Mahdi HI (2016) Int J Mater Sci Appl, ISSN: 2327-2635 (Print); ISSN: 2327-2643, (2016).

  35. Song N, Green MA, Huang J, Hu Y, Hao X (2018) Appl Surf Sci 459:700–706

    Article  CAS  Google Scholar 

  36. Muhunthan N, Singh OP, Toutam V, Singh VN (2015) Mater Res Bull 70:373–378

    Article  CAS  Google Scholar 

  37. Thiruvenkadama S, Prabhakaran S, Chakravarty S, Ganesan V, Sathe V, Kumar MCSanthosh, Rajesh AL (2018) Phys B: Phys Condens Matter 533:22–27

    Article  Google Scholar 

  38. Kotbi A, Hartiti B, Fadili S, Ridah A, Thevenin P (2017) Appl Phys A 123:379

    Article  Google Scholar 

  39. Souri D, Mohammadi M, Zaliani H (2014) Electron Mater Lett 10(6):1103–1108

    Article  CAS  Google Scholar 

  40. Tauc J, Grigorovici R, Vancu A (1966) Phys Stat Sol 15:627–637

    Article  CAS  Google Scholar 

  41. Hassanien AS, Akl AA (2018) Appl Phys A 124:752

    Article  CAS  Google Scholar 

  42. Souri D, Tahan ZE (2015) Appl Phys B 119:273–279

    Article  CAS  Google Scholar 

  43. Woo K, Kim Y, Moon J (2012) Energy Environ Sci 5:5340–5345

    Article  CAS  Google Scholar 

  44. Suryawanshi MP, Patil PS, Shin SW, Gurav KV, Agawane GL, Gang MG, Kim JH, Moholkar AV (2014) RSC Adv 4(36):18537

    Article  CAS  Google Scholar 

  45. Sánchez TG, Mathew X, Mathews NR (2016) J Cryst Growth 445:15–23

    Article  Google Scholar 

  46. Feng J, Huang X, Chen W, Wu J, Lin H, Cheng Q, Yun D, Zhang F (2016) Vacuum 126:84e90

    Article  Google Scholar 

  47. Deokate RJ, Kate RS, Bulakhe SC (2019) J Mater Sci: Mater Electron, J Mater Sci 30(4):3530–3538

    CAS  Google Scholar 

  48. Majula L, Mlyuka NR, Samiji ME (2015) J Korean Phys Soc 67(6):1078–1081

    Article  CAS  Google Scholar 

  49. Wager JF (2017) AIP Adv 7 7(12):125321

    Article  Google Scholar 

  50. Pan Y, Inam F, Zhang M, Drabold DA (2008) Phys Rev Lett 100:206403

    Article  CAS  Google Scholar 

  51. khalidi Z, Comini E, Hartiti B, Moumen A, Munasinghe Arachchige HMM, Fadili S, Thevenin P, Kamal A (2017) Mater Des 139:56–64

    Article  Google Scholar 

  52. Sadigh B, Erhart P, A. berg D, Trave A, Schwegler E, Bude J (2011) Phys Rev Lett 106:027401

    Article  CAS  Google Scholar 

  53. Ehsani MH, Moghadama RZ, Dizajia HR, Kamel P (2017) Mater Res Express 4(9):096408

    Article  Google Scholar 

  54. Fayek SA, El-Ocker M, Hassanien AS (2001) Mater Chem Phys 70(2):231–235

    Article  CAS  Google Scholar 

  55. Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S (2018) Sol Energy Mater Sol Cells 179:142–151

    Article  CAS  Google Scholar 

  56. Zhang K, Tao J, He J, Wang W, Sun L, Yang P, Chu J, Mater J (2014) Sci: Mater Electron 25(6):2703–2709

    CAS  Google Scholar 

  57. Yu X, Ren A, Wang F, Wang C, Zhang J, Wang W, Wu L, Li W, Zeng G, Feng L (2014) Int J Photoenergy 2014 861249(1-6):6

    Google Scholar 

  58. Dahal B, Joshi LP, Pandey SN, Shrestha SP (2017) Asian J Chem Sci 2(4):1–8

    Article  Google Scholar 

Download references

Acknowledgements

BH, Senior Associate at ICTP (The Abdus Salam International Centre for Theoretical Physics), is very grateful to ICTP for financial support. Technical support from LMOPS (University of Lorraine, France) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ziti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziti, A., Hartiti, B., Labrim, H. et al. Development of dip-coated Cu2ZnSnS4 absorber material without sulphurisation. J Sol-Gel Sci Technol 99, 252–262 (2021). https://doi.org/10.1007/s10971-021-05553-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05553-7

Keywords

Navigation