Skip to main content
Log in

Properties of Al3+ substituted nickel ferrite (NiAlxFe2-xO4) nanoparticles synthesised using wet sol-gel auto-combustion

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Currently, spinel ferrites are of great interest due to their large range of practical high frequency applications. Nickel spinel ferrites with formula NiAlxFe2-xO4 (where x = 0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared by a wet chemical sol-gel auto-combustion method. All the samples were annealed at 600 °C for 3 h and pellets were made to investigate the dielectric properties. The spinel structure of the nickel-based ferrites was confirmed by using X-rays diffraction analysis. The crystallite size was estimated using Scherrer’s formula and observed to be in the range from 11 to 17 nm. The addition of Al3+ varies the lattice constant from 8.26 to 8.35 Å. The study of dielectric properties of interest (complex dielectric constant, dielectric tangent loss, impedance, A.C. conductivity, and electric modulus) as a function of the Al doping concentration was carried out in the frequency range from 1 MHz to 3 GHz using an impedance analyser. On the basis of these investigations, it was found that both the real and imaginary parts of the dielectric constant decreased with increasing applied frequency. Cole–Cole plots of electric modulus revealed evidence of contribution from grains and grain boundaries in the conduction mechanism. The observations revealed that with increasing aluminium doping, the dielectric properties of these ferrite materials are 6.

Highlights

  • Sol-Gel route has been utilised to synthesise Al3+ substituted nickel ferrites (NiAlxFe2-xO4).

  • Structural analysis of nickel ferrites was carried out through XRD studies.

  • Impedance spectroscopy in the range from 1MHz-3GHz was employed to investigate the dielectric parameters of NiAlxFe2-xO4 ferrites.

  • A good value of dielectric parameters suggested the possible utilisation of prepared materials in high frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Devi EC, Soibam I (2019) Tuning the magnetic properties of a ferrimagnet. J Magn Magn Mater 469:587–592

    Article  CAS  Google Scholar 

  2. Devi NP, Maisnam M (2020) Characterizations of Sol-Gel Synthesized and High Energy Ball Milled Spinel Nanoferrites: MFe2O4 (M = Li, Ni, Zn, Mn) for Nanofluid Preparations. Integr Ferroelectr 204(1):133–141. https://doi.org/10.1080/10584587.2019.1674972

    Article  CAS  Google Scholar 

  3. Smit J, HP J (1959) Wijn. HPJ Ferrites: physical properties of ferrimagneticoxides in relation to their technical applications Eindhoven. Philips’ Technical Library, Netherlands

    Google Scholar 

  4. Tiwari P, Verma R, Kane S, Tatarchuk T, Mazaleyrat F (2019) Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater Chem Phys 229:78–86

    Article  CAS  Google Scholar 

  5. Tahir Farid HM, Ahmad I, Ali I, Mahmood A, Ramay SM (2018) Structural and dielectric properties of copper-based spinel ferrites. Eur Phys J Plus 133(2). https://doi.org/10.1140/epjp/i2018-11832-4

  6. Maria Lumina Sonia M, Anand S, Blessi S, Pauline S, Manikandan A (2018) Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic and dielectric properties of NiFe2O4 nanoparticles. Ceram Int 44(18):22068–22079. https://doi.org/10.1016/j.ceramint.2018.08.317

    Article  CAS  Google Scholar 

  7. Lynda IJC, Durka M, Dinesh A, Manikandan A, Jaganathan SK, Baykal A, Antony SA (2018) Enhanced Magneto-optical and Photocatalytic Properties of Ferromagnetic Mg1−yNiyFe2O4 (0.0 ≤ y ≤ 1.0) Spinel Nano-ferrites. J Supercond Nov Magn 31(11):3637–3647. https://doi.org/10.1007/s10948-018-4623-x

    Article  CAS  Google Scholar 

  8. Spaldin NA (2010) Magnetic materials: fundamentals and applications. Cambridge university press, London

  9. Sonia MML, Anand S, Blessi S, Pauline S, Manikandan A (2018) Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic and dielectric properties of NiFe2O4 nanoparticles. Ceram Int 44(18):22068–22079

    Article  Google Scholar 

  10. Chithra M, Anumol CN, Argish V, Sahu B, Sahoo SC (2017) Tailoring magnetic properties of cobalt ferrite nanoparticles by different divalent cation substitution. J Mater Sci: Mater Electron 29(1):813–822. https://doi.org/10.1007/s10854-017-7976-1

    Article  CAS  Google Scholar 

  11. Raju GG (2016) Dielectrics in Electric Fields. CRC press

  12. Bolle D, Whicker L (1975) Annotated literature survey of microwave ferrite materials and devices. IEEE Trans Magn 11(3):907–926

    Article  Google Scholar 

  13. Joshi S, Kumar M, Chhoker S, Kumar A, Singh M (2017) Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J Magn Magn Mater 426:252–263

    Article  CAS  Google Scholar 

  14. Pradhan DK, Kumari S, Puli VS, Das PT, Pradhan DK, Kumar A, Scott JF, Katiyar RS (2017) Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite. Phys Chem Chem Phys 19(1):210–218

    Article  CAS  Google Scholar 

  15. Tatarchuk T, Paliychuk N, Pacia M, Kaspera W, Macyk W, Kotarba A, Bogacz BF, Pędziwiatr AT, Mironyuk I, Gargula R (2019) Structure–redox reactivity relationships in Co1−xZnxFe2O4: the role of stoichiometry. N J Chem 43(7):3038–3049

    Article  CAS  Google Scholar 

  16. Yadav A, Varshney D (2018) Structural and temperature dependent dielectric behavior of Cr and Zn doped MnFe2O4 nano ferrites. Superlattices Microstruct 113:153–159. https://doi.org/10.1016/j.spmi.2017.10.036

    Article  CAS  Google Scholar 

  17. Hashim M, Kumar S, Shirsath SE, Kotnala R, Shah J, Kumar R (2013) Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater Chem Phys 139(2-3):364–374

    Article  CAS  Google Scholar 

  18. Farid HMT, Ahmad I, Ali I, Mahmood A, Ramay SM (2018) Structural and dielectric properties of copper-based spinel ferrites. Eur Phys J 133(2):41

    Google Scholar 

  19. Kumari C, Dubey HK, Naaz F, Lahiri P (2020) Structural and optical properties of nanosized Co substituted Ni ferrites by coprecipitation method. Phase Transit 93(2):207–216. https://doi.org/10.1080/01411594.2019.1709120

    Article  CAS  Google Scholar 

  20. Rafiq MA, Javed A, Rasul MN, Khan MA, Hussain A (2020) Understanding the structural, electronic, magnetic and optical properties of spinel MFe2O4 (M=Mn, Co, Ni) ferrites. Ceram Int 46(4):4976–4983. https://doi.org/10.1016/j.ceramint.2019.10.237

    Article  CAS  Google Scholar 

  21. Javed A, Szumiata T, Sarwar A, Fatima T (2019) Structure and Mössbauer spectroscopy studies of Ni0.5Zn0.5NdFe2-O4 (0.00 ≤ x ≤ 0.10) ferrites. Mater Chem Phys 221:99–107. https://doi.org/10.1016/j.matchemphys.2018.09.042

    Article  CAS  Google Scholar 

  22. Vellayappan M, Jaganathan S, Manikandan A (2016) Nanomaterials as a game changer in the management and treatment of diabetic foot ulcers. Rsc Adv 6(115):114859–114878

    Article  CAS  Google Scholar 

  23. Bomila R, Srinivasan S, Gunasekaran S, Manikandan A (2018) Enhanced photocatalytic degradation of methylene blue dye, opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles. J Supercond Nov Magn 31(3):855–864

    Article  CAS  Google Scholar 

  24. Subramanian A, Jaganathan S, Manikandan A, Pandiaraj K, Gomathi N, Supriyanto E (2016) Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. Rsc Adv 6(54):48294–48314

    Article  CAS  Google Scholar 

  25. Arévalo-Cid P, Isasi J, Alcolea Palafox M, Martín-Hernández F (2020) Comparative structural, morphological and magnetic study of MFe2O4 nanopowders prepared by different synthesis routes. Mater Res Bull 123. https://doi.org/10.1016/j.materresbull.2019.110726

  26. Pianciola BN, Lima JrE, Troiani HE, Nagamine LC, Cohen R, Zysler RD (2015) Size and surface effects in the magnetic order of CoFe2O4 nanoparticles. J Magn Magn Mater 377:44–51

    Article  CAS  Google Scholar 

  27. Tatarchuk T, Liaskovska M, Kotsyubynsky V, Bououdina M (2018) Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mössbauer studies. Mol Cryst Liq Cryst 672(1):54–66

    Article  CAS  Google Scholar 

  28. Joshi S, Kumar M, Chhoker S, Srivastava G, Jewariya M, Singh VN (2014) Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J Mol Struct 1076:55–62. https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  CAS  Google Scholar 

  29. Alarifi A, Deraz NM, Shaban S (2009) Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J Alloy Compd 486(1-2):501–506. https://doi.org/10.1016/j.jallcom.2009.06.192

    Article  CAS  Google Scholar 

  30. Padmapriya G, Manikandan A, Krishnasamy V, Jaganathan SK, Antony SA (2016) Spinel NixZn1−xFe2O4 (0.0≤ x≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J Mol Struct 1119:39–47

    Article  CAS  Google Scholar 

  31. Manikandan A, Hema E, Durka M, Seevakan K, Alagesan T, Arul Antony S (2015) Room Temperature Ferromagnetism of Magnetically Recyclable Photocatalyst of Cu1−xMnxFe2O4-TiO2 (0.0 ≤ x ≤ 0.5) Nanocomposites. J Supercond Nov Magn 28(6):1783–1795. https://doi.org/10.1007/s10948-014-2945-x

    Article  CAS  Google Scholar 

  32. Chen H, Yan J, Wu H, Zhang Y, Liu S (2016) One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH) 2 nanosheet for enhanced water oxidation. J Power Sources 324:499–508. https://doi.org/10.1016/j.jpowsour.2016.05.075

    Article  CAS  Google Scholar 

  33. Zhu H-Y, Jiang R, Fu Y-Q, Li R-R, Yao J, Jiang S-T (2016) Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Appl Surf Sci 369:1–10. https://doi.org/10.1016/j.apsusc.2016.02.025

    Article  CAS  Google Scholar 

  34. Yan J, Huang Y, Chen X, Wei C (2016) Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials. Synth Met 221:291–298. https://doi.org/10.1016/j.synthmet.2016.09.018

    Article  CAS  Google Scholar 

  35. Wu F, Wang X, Li M, Xu H (2016) A high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteries. Ceram Int 42(15):16666–16670. https://doi.org/10.1016/j.ceramint.2016.07.099

    Article  CAS  Google Scholar 

  36. Shahzadi K, Chandio AD, Mustafa G, Khalid M, Khan JK, Akhtar MS, Gilani ZA (2020) Impact of aluminum substitution on the structural and dielectric properties of Ni–Cu spinel ferrite nanoparticles synthesized via sol–gel route. Optical Quantum Electron 52(4):1–17

    Article  Google Scholar 

  37. Channa N, Khalid M, Chandio AD, Mustafa G, Akhtar MS, Khan JK, Ahmad J, Kalhoro KA (2020) Nickel-substituted manganese spinel ferrite nanoparticles for high-frequency applications. J Mater Sci: Mater Electron 31(2):1661–1671

    CAS  Google Scholar 

  38. Dabagh S, Chaudhary K, Haider Z, Ali J (2018) Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method. Results Phys 8:93–98

    Article  Google Scholar 

  39. Dasan Y, Guan B, Zahari M, Chuan L (2017) Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite. PLoS ONE 12(1):e0170075

    Article  CAS  Google Scholar 

  40. Cullity BD (1956) Elements of X-ray Diffraction. Addison-Wesley Publishing, London

  41. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch. Springer, p 387–409

  42. Hill NE (1969) Dielectric properties and molecular behaviour. Van Nostrand Reinhold, London

  43. Thampi DV, Rao PP, Radhakrishnan A (2014) Influence of Ce substitution on the order-to-disorder structural transition, thermal expansion and electrical properties in Sm2Zr2−xCexO7 system. RSC Adv 4(24):12321–12329

    Article  Google Scholar 

  44. Suo NZX, Sun AM, Yu LC, Zuo Z, Zhang W, Zhao XQ (2020) Effect performance of the nanomagnetic properties of Ni-Cu-Co ferrites by Al3+ ions adulteration. Mod Phys Lett B 34(5):17. https://doi.org/10.1142/s0217984920500591

    Article  Google Scholar 

  45. Rohadiana D, Jamal Z, Jamaludin S, Bari M, Adnan J (2011) Structural & magnetic characterizations of NiLiZn nanoferrites synthesized by co-precipitation method. J Mater Sci Technol 27(11):991–995

    Article  CAS  Google Scholar 

  46. DS VT, Padala PR, Renju U (2015) Influence of aliovalent cation substitution on structural and electrical properties of Gd2(Zr1−xMx)2O7−δ (M = Sc, Y) systems. RSC Adv 5(108):88675–88685

    Article  Google Scholar 

  47. Smit J, Wign H (1959) Ferrites. John Willy & Sons. Pub. Co., New York. 143

  48. Junaid M, Khan MA, Iqbal F, Murtaza G, Akhtar MN, Ahmad M, Shakir I, Warsi MF (2016) Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route. J Magn Magn Mater 419:338–344. https://doi.org/10.1016/j.jmmm.2016.06.043

    Article  CAS  Google Scholar 

  49. Panda R, Behera D (2014) Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J Alloy Compd 587:481–486

    Article  CAS  Google Scholar 

  50. Dhaou MH, Hcini S, Mallah A, Bouazizi ML, Jemni A (2017) Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle. Appl Phys A 123(1):8

    Article  Google Scholar 

  51. Joshi J, Kanchan D, Joshi M, Jethva H, Parikh K (2017) Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull 93:63–73

    Article  CAS  Google Scholar 

  52. J. Griffiths D (1999) Introduction to electrodynamics, vol 3rd. vol 3rd, 3rd edn. Prentice Hall Upper saddle River, New jersey 07458, New jersey

  53. Karamat N, Ashiq MN, Najam-ul-Haq M, Ali I, Iqbal MA, Irfan M, Abbas Y, Athar M (2014) Investigation of structural and electrical properties of vanadium substituted disordered pyrochlore-type Ho2− xVxZr2O7 nanostructure. J Alloy Compd 593:117–122

    Article  CAS  Google Scholar 

  54. Azhar Khan M, Sabir M, Mahmood A, Asghar M, Mahmood K, Afzal Khan M, Ahmad I, Sher M, Farooq Warsi M (2014) High frequency dielectric response and magnetic studies of Zn1−xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique. J Magn Magn Mater 360:188–192. https://doi.org/10.1016/j.jmmm.2014.02.059

    Article  CAS  Google Scholar 

  55. Perron H, Mellier T, Domain C, Roques J, Simoni E, Drot R, Catalette H (2007) Structural investigation and electronic properties of the nickel ferrite NiFe2O4: a periodic density functional theory approach. J Phys: Condens Matter 19 (34). https://doi.org/10.1088/0953-8984/19/34/346219

  56. Ghosh MP, Mukherjee S (2019) Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites. Appl Phys A 125(12):853

    Article  Google Scholar 

  57. Stergiou C (2017) Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites. J Magn Magn Mater 426:629–635

    Article  CAS  Google Scholar 

  58. Gajula GR, Buddiga LR, Kumar KC, Dasari M (2020) Study on electric modulus, complex modulus and conductivity properties of Nb/Sm, Gd doped barium titanate-lithium ferrite ceramic composites. Results Phys 17:103076

    Article  Google Scholar 

  59. Aziz HS, Rasheed S, Khan RA, Rahim A, Nisar J, Shah SM, Iqbal F, Khan AR (2016) Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv 6(8):6589–6597

    Article  CAS  Google Scholar 

  60. Aziz HS, Khan RA, Shah F, Ismail B, Nisar J, Shah SM, Rahim A, Khan AR (2019) Improved electrical, dielectric and magnetic properties of Al-Sm co-doped NiFe2O4 spinel ferrites nanoparticles. Mater Sci Eng: B 243:47–53

    Article  Google Scholar 

  61. Ikram S, Jacob J, Arshad MI, Mahmood K, Ali A, Sabir N, Amin N, Hussain S (2019) Tailoring the structural, magnetic and dielectric properties of Ni-Zn-CdFe2O4 spinel ferrites by the substitution of lanthanum ions. Ceram Int 45(3):3563–3569

    Article  CAS  Google Scholar 

  62. Rodrigues H, Junior GP, Sales A, Silva P, Costa B, Alcantara JrP, Moreira S, Sombra A (2011) BiFeO3 ceramic matrix with Bi2O3 or PbO added: Mössbauer, Raman and dielectric spectroscopy studies. Phys B: Condens Matter 406(13):2532–2539

    Article  CAS  Google Scholar 

  63. Pandit R, Sharma K, Kaur P, Kumar R (2014) Cation distribution controlled dielectric, electrical and magnetic behavior of In3+ substituted cobalt ferrites synthesized via solid-state reaction technique. Mater Chem Phys 148(3):988–999

    Article  CAS  Google Scholar 

  64. ur Rahman A, Rafiq M, Karim S, Maaz K, Siddique M, Hasan M (2011) Reduced conductivity and enhancement of Debye orientational polarization in lanthanum doped cobalt ferrite nanoparticles. Phys B: Condens Matter 406(23):4393–4399

    Article  CAS  Google Scholar 

  65. Singh N, Agarwal A, Sanghi S, Khasa S (2012) Dielectric loss, conductivity relaxation process and magnetic properties of Mg substituted Ni–Cu ferrites. J Magn Magn Mater 324(16):2506–2511

    Article  CAS  Google Scholar 

  66. Ortega N, Kumar A, Bhattacharya P, Majumder S, Katiyar R (2008) Impedance spectroscopy of multiferroic PbZrxTi1−xO3∕ CoFe2O4 layered thin films. Phys Rev B 77(1):014111

    Article  Google Scholar 

Download references

Acknowledgements

NED University of Engineering and Technology, Karachi, Pakistan and Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta Pakistan are highly acknowledged for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junaid Kareem Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J.K., Khalid, M., Chandio, A.D. et al. Properties of Al3+ substituted nickel ferrite (NiAlxFe2-xO4) nanoparticles synthesised using wet sol-gel auto-combustion. J Sol-Gel Sci Technol 101, 606–617 (2022). https://doi.org/10.1007/s10971-020-05426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05426-5

Keywords

Navigation