Skip to main content
Log in

Tailoring magnetic properties of cobalt ferrite nanoparticles by different divalent cation substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different divalent cation substituted Co-ferrite (MXCo1−XFe2O4, where M = Mg2+, Ni2+, Cu2+, Zn2+, with x = 0.20 and 0.75) nanoparticles were synthesized by sol–gel method and were annealed at 900 °C in air. After annealing, grain growth was observed for all the samples. With the substitution of Mg2+, Ni2+ and Cu2+ with x = 0.20, the magnetization of the as-prepared and the annealed samples was decreased from that of the Co-ferrite whereas Zn2+ substitution enhanced the magnetization. The highest magnetization values of 79.9 and 92.9 emu/g at 300 and 60 K respectively were observed for the Zn2+ substituted annealed sample with x = 0.20. For higher concentration of x = 0.75, the magnetization value was further decreased in all the samples and the lowest magnetization value of 5.1 emu/g was observed in the Zn2+ substituted annealed sample with x = 0.75 at 300 K. The coercivity was reduced in the samples except for the Cu2+ substituted sample. In the Cu2+ substituted sample with x = 0.75, the highest coercivity of 1.43 kOe at 300 K was observed after annealing. The changed cation distribution in the spinel structure, ionic magnetic moment and anisotropy compared to the Co2+ in these nanomaterials can explain the observed magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Sedlacik, V. Pavlinek, P. Peer, P. Filip, Dalton Trans. 43, 6919–6924 (2014)

    Article  Google Scholar 

  2. M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, J. Magn. Magn. Mater. 401, 1–8 (2016)

    Article  Google Scholar 

  3. K. Ugendar, V. Vaithyanathan, L.N. Patro, S.S.R. Inbanathan, K.K. Bharathi, J. Phys. D 49, 305001 (2016)

    Article  Google Scholar 

  4. J. Mohapatra, A. Mitra, D. Bahadur, M. Aslam, J. Alloys Compd. 628, 416–423 (2015)

    Article  Google Scholar 

  5. Y.C. Wang, J. Ding, J.H. Yin, B.H. Liu, J.B. Yi, S. Yu, J. Appl. Phys. 98, 124306 (2005)

    Article  Google Scholar 

  6. S.M. Patange, S.S. Desai, S.S. Meena, S.M. Yusuf, S.E. Shirsath, RSC Adv. 5, 91482–91492 (2015)

    Article  Google Scholar 

  7. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 134, 10182–10190 (2012)

    Article  Google Scholar 

  8. M.V. Limaye, S.B. Singh, S.K. Date, D. Kothari, V.R. Reddy, A. Gupta, V. Sathe, R.J. Choudhary, S.K. Kulkarni, J. Phys. Chem. B 113, 9070–9076 (2009)

    Article  Google Scholar 

  9. S.-T. Xu, Y. Ma, Y. Xu, X. Sun, B. Geng, G. Zheng, Z. Dai, Mater. Res. Bull. 62, 142–147 (2015)

    Article  Google Scholar 

  10. G. Bate, J. Magn. Magn. Mater. 100, 413–424 (1991)

    Article  Google Scholar 

  11. F. Choueikani, F. Royer, D. Jamon, A. Siblini, J.J. Rousseau, S. Neveu, J. Charara, Appl. Phys. Lett. 94, 51113 (2009)

    Article  Google Scholar 

  12. O.F. Caltun, G.S.N. Rao, K.H. Rao, B.P. Rao, C. Kim, C. Kim, I. Dumitru, N. Lupu, H. Chiriac, Sens. Lett. 5, 1–3 (2007)

    Article  Google Scholar 

  13. S. Shylesh, W.R. Thiel, V. Schünemann, Angew. Chemie Int. Ed. 49, 3428–3459 (2010)

    Article  Google Scholar 

  14. O. Veiseh, J. Gunn, M. Zhang, Adv. Drug Deliv. Rev. 62, 284–304 (2010)

    Article  Google Scholar 

  15. J.-H. Lee, Y.-M. Huh, Y. Jun, J. Seo, J. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, Nat. Med. 13, 95–99 (2007)

    Article  Google Scholar 

  16. D.M. Bruls, T.H. Evers, J.A.H. Kahlman, P.J.W. van Lankvelt, M. Ovsyanko, E.G.M. Pelssers, J.J.H.B. Schleipen, F.K. de Theije, C.A. Verschuren, T. van der Wijk, J.B.A. van Zon, W.U. Dittmer, A.H.J. Immink, J.H. Nieuwenhuis, M.W.J. Prins, Lab Chip 9, 3504–3510 (2009)

    Article  Google Scholar 

  17. J.-H. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon, Nat. Nanotechnol. 6, 418–422 (2011)

    Article  Google Scholar 

  18. A. López-Ortega, E. Lottini, C.D.J. Fernández, C. Sangregorio, Chem. Mater. 27, 4048–4056 (2015)

    Article  Google Scholar 

  19. C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D.J. Djayaprawira, M. Takahashi, R.J. Joseyphus, A. Narayanasamy, Appl. Phys. Lett. 83, 2862–2864 (2003)

    Article  Google Scholar 

  20. J. Wang, X. Gao, C. Yuan, J. Li, X. Bao, J. Magn. Magn. Mater. 401, 662–666 (2016)

    Article  Google Scholar 

  21. M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, J. Magn. Magn. Mater. 424, 174–184 (2017)

    Article  Google Scholar 

  22. S. Jabez, S. Mahalakshmi, S. Nithiyanantham, J. Mater. Sci. 28, 5504–5511 (2017)

    Google Scholar 

  23. P. Paramasivan, P. Venkatesh, J. Supercond. Nov. Magn. 29, 2805–2811 (2016)

    Article  Google Scholar 

  24. M. Artus, L. Ben Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.-M. Greneche, S. Ammar, F. Feivet, J. Phys. Condens. Matter 23, 506001 (2011)

    Article  Google Scholar 

  25. Y. Kumar, P.M. Shirage, J. Mater. Sci. 52, 4840–4851 (2017)

    Article  Google Scholar 

  26. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89–96 (2011)

    Article  Google Scholar 

  27. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Mater. Sci. Eng. B 206, 69–78 (2016)

    Article  Google Scholar 

  28. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, Somerset, 2009)

    Google Scholar 

  29. M. Desai, S. Prasad, N. Venkataramani, I. Samajdar, A.K. Nigam, R. Krishnan, J. Appl. Phys. 91, 2220 (2002)

    Article  Google Scholar 

  30. H.M. Lu, X.K. Meng, J. Phys. Chem. C 114, 21291–21295 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

S.C. Sahoo thanks UGC, Govt. of India for partial financial support through a Grant Number F.20-3(8)/2012(BSR) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subasa C. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chithra, M., Anumol, C.N., Argish, V. et al. Tailoring magnetic properties of cobalt ferrite nanoparticles by different divalent cation substitution. J Mater Sci: Mater Electron 29, 813–822 (2018). https://doi.org/10.1007/s10854-017-7976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7976-1

Navigation