Skip to main content

Advertisement

Log in

Deliquescent behavior of calcium phosphate materials synthesized by sol–gel technique

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Water storage and purification, as well as dehydration processes, are a cause of concern for many healthy and industrial issues. In this work, calcium phosphate (CaP) materials with high water capture performance were prepared by sol–gel synthesis. After their structural characterization by several techniques, they were used in water capture tests performed in temperatures ranging from 25 to 45 °C using a climatic chamber kept at a relative humidity of 60%. The CaP samples showed a higher water uptake capacity than a commercial silica sample commonly used as a water adsorbent, despite the low surface area and pore volume displayed by the former. Moreover, different from the silica adsorbent, the studied CaP materials were submerged by the captured water after the first day, which suggests a deliquescent behavior. The CaP mass uptakes reached around 350% when tested at 25 °C and the materials release the adsorbed water quickly when heated at 100 °C. It was also demonstrated that the materials prepared here maintained their structural integrity even after the deliquescence step, which could allow their use for many cycles.

Highlights

  • Calcium phosphate materials were prepared by sol–gel synthesis.

  • Materials consist of CaHPO4 crystals with an amorphous phase.

  • Calcium phosphate (CaP) samples present high water capture capacities.

  • Sample structures do not contain a significant volume of mesopores.

  • Synthesized CaP materials present deliquescent behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Farrusseng D (2011) Metal-organic frameworks: applications from catalysis to gas storage. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Canivet J, Fateeva A, Guo Y et al. (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43:5594–5617. https://doi.org/10.1039/c4cs00078a

    Article  CAS  Google Scholar 

  3. Furukawa H, Gándara F, Zhang Y-B et al. (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136:4369–81. https://doi.org/10.1021/ja500330a

    Article  CAS  Google Scholar 

  4. Becker PS (1972) Deliquescent desiccant gas dryer and method. US Patent 3,653,181

  5. Yao W, Yu X, Lee JW et al. (2011) Measuring the deliquescence point of crystalline sucrose as a function of temperature using a new automatic isotherm generator. Int J Food Prop 14:882–893. https://doi.org/10.1080/10942910903474393

    Article  CAS  Google Scholar 

  6. Tereshchenko AG (2015) Deliquescence: hygroscopicity of water-soluble crystalline solids. J Pharm Sci 104:3639–3652. https://doi.org/10.1002/jps.24589

    Article  CAS  Google Scholar 

  7. Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    Article  CAS  Google Scholar 

  8. Salameh AK, Mauer LJ, Taylor LS (2006) Deliquescence lowering in food ingredient mixtures. J Food Sci 71:E10–E16. https://doi.org/10.1111/j.1365-2621.2006.tb12392.x

    Article  CAS  Google Scholar 

  9. Reports SS, Henderson M, Northwest P (2016) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308. https://doi.org/10.1016/S0167-5729(01)00020-6

    Article  Google Scholar 

  10. Mauer LJ, Taylor LS (2010) Water-solids interactions: deliquescence. Annu Rev Food Sci Technol 1:41–63. https://doi.org/10.1146/annurev.food.080708.100915

    Article  CAS  Google Scholar 

  11. van Campen L, Amidon GL, Zografi G (1983) Moisture sorption kinetics for water-soluble substances. I: theoretical considerations of heat transport control. J Pharm Sci 72:1381–1388. https://doi.org/10.1002/jps.2600721204

    Article  Google Scholar 

  12. Marques CF, Olhero S, Abrantes JCC et al. (2017) Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine. Ceram Int 43:15719–15728. https://doi.org/10.1016/j.ceramint.2017.08.133

    Article  CAS  Google Scholar 

  13. Dawood AE, Manton DJ, Parashos P et al. (2018) Biocompatibility and osteogenic/calcification potential of casein phosphopeptide-amorphous calcium phosphate fluoride. J Endod 44:452–457. https://doi.org/10.1016/j.joen.2017.11.005

    Article  Google Scholar 

  14. Zhao M, Dai Y, Li X et al. (2018) Evaluation of long-term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites. Mater Sci Eng C 90:365–378. https://doi.org/10.1016/j.msec.2018.04.082

    Article  CAS  Google Scholar 

  15. Chen X, Wright JV, Conca JL, Peurrung LM (1997) Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Pollut 98:57–78. https://doi.org/10.1023/A:1026425931811

    Article  CAS  Google Scholar 

  16. Ozawa M, Satake K, Suzuki S (2003) Removal of aqueous manganese using fish bone hydroxyapatite. J Mater Sci Lett 22:1363–1364. https://doi.org/10.1023/A:1025795529901

    Article  CAS  Google Scholar 

  17. Plec I, Dimovic S, Mitric M (2006) Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res 40:2267–2274. https://doi.org/10.1016/j.watres.2006.04.031

    Article  CAS  Google Scholar 

  18. Xu H, Yang L, Wang P, Yu L, Peng M (2007) Removal mechanism of aqueous lead by a novel eco-material: carbonate hydroxyapatite. J Mater Sci Technol 23:417

    Article  CAS  Google Scholar 

  19. Sanosh KP, Chu MC, Balakrishnan A et al. (2010) Sol-gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr Appl Phys 10:68–71. https://doi.org/10.1016/j.cap.2009.04.014

    Article  Google Scholar 

  20. Wang J, Shaw LL (2009) Synthesis of high purity hydroxyapatite nanopowder via sol–gel combustion process. J Mater Sci Mater Med 20:1223–1227. https://doi.org/10.1007/s10856-008-3685-x

    Article  CAS  Google Scholar 

  21. Fernández-pacheco R, Marquina C, Gupta R, Kumar A (2008) Bioactive materials for biomedical applications using sol–gel technology. Biomed Mater 3:034005. https://doi.org/10.1088/1748-6041/3/3/034005

    Article  CAS  Google Scholar 

  22. Houmard M, Fu Q, Saiz E, Tomsia AP (2012) Sol-gel method to fabricate CaP scaffolds by robocasting for tissue engineering. J Mater Sci Mater Med 23:921–930. https://doi.org/10.1007/s10856-012-4561-2

    Article  CAS  Google Scholar 

  23. Rodrigues Mota TL, Marques de Oliveira AP, Nunes EHM, Houmard M (2017) Simple process for preparing mesoporous sol-gel silica adsorbents with high water adsorption capacities. Microporous Mesoporous Mater 253:177–182. https://doi.org/10.1016/j.micromeso.2017.07.010

    Article  CAS  Google Scholar 

  24. Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23:1065–1072. https://doi.org/10.1016/S0142-9612(01)00218-6

    Article  CAS  Google Scholar 

  25. Varma HK, Babu SS (2005) Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int 31:109–114. https://doi.org/10.1016/j.ceramint.2004.03.041

    Article  CAS  Google Scholar 

  26. Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloy Compd 430:330–333. https://doi.org/10.1016/j.jallcom.2006.05.018

    Article  CAS  Google Scholar 

  27. Bekiaris G, Peltre C, Jensen LS, Bruun S (2016) Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochim Acta Part A 168:29–36. https://doi.org/10.1016/j.saa.2016.05.049

    Article  CAS  Google Scholar 

  28. ElBatal HA, Khalil EMA, Hamdy YM (2009) In vitro behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing titania. Ceram Int 35:1195–1204. https://doi.org/10.1016/j.ceramint.2008.06.004

    Article  CAS  Google Scholar 

  29. Meejoo S, Maneeprakorn W, Winotai P (2006) Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta 447:115–120. https://doi.org/10.1016/j.tca.2006.04.013

    Article  CAS  Google Scholar 

  30. Fathi MH, Hanifi A, Mortazavi V (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202:536–542. https://doi.org/10.1016/j.jmatprotec.2007.10.004

    Article  CAS  Google Scholar 

  31. Chukanov NV, Chervonnyi AD (2016) Some general aspects of the application of IR spectroscopy to the investigation of minerals. In: Infrared spectroscopy of minerals and related compounds. Springer, Cham, p 1–49

  32. Victoria EC, Gnanam FD (2002) Synthesis and characterisation of biphasic calcium phosphate. Trends Biomater Artif Organs 16:12–14

    Google Scholar 

  33. Brockner W, Ehrhardt C, Gjikaj M (2007) Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim Acta 456:64–68. https://doi.org/10.1016/j.tca.2007.01.031

    Article  CAS  Google Scholar 

  34. Anjaneyulu U, Pattanayak DK, Vijayalakshmi U (2016) Snail shell derived natural hydroxyapatite: Effects on NIH-3T3 cells for orthopedic applications. Mater Manuf Process 31:206–216. https://doi.org/10.1080/10426914.2015.1070415

    Article  CAS  Google Scholar 

  35. Takahashi K, Hayakawa T, Yoshinari M et al. (2005) Molecular precursor method for thin calcium phosphate coating on titanium. Thin Solid Films 484:1–9. https://doi.org/10.1016/j.tsf.2004.12.052

    Article  CAS  Google Scholar 

  36. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218. https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  37. Thommes M, Kaneko K, Neimark AV et al. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  38. Thomson GW (1946) The antoine equation for vapor-pressure data. Chem Rev 38:1–39. https://doi.org/10.1021/cr60119a001

    Article  CAS  Google Scholar 

  39. Taylor RM, Kuennen RW (1994) Removing lead in drinking water with activated carbon. Environ Prog 13:65–71. https://doi.org/10.1002/ep.670130124

    Article  CAS  Google Scholar 

  40. Starov VM (2010) Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading. Adv Colloid Interface Sci 161:139–152

    Article  CAS  Google Scholar 

  41. Jensen KR, Fojan P, Jensen RL, Gurevich L (2014) Water condensation: a multiscale phenomenon. J Nanosci Nanotechnol 14:1859–1871

    Article  CAS  Google Scholar 

  42. Lagergren S (1898) Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  43. Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf

    Article  Google Scholar 

  44. Oliveira LS, Franca AS, Alves TM, Rocha SDF (2008) Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J Hazard Mater 155:507–512. https://doi.org/10.1016/j.jhazmat.2007.11.093

    Article  CAS  Google Scholar 

  45. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  46. Dördelmann G, Kozlova D, Karczewski S et al. (2014) Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J Mater Chem B 2:7250–7259. https://doi.org/10.1039/c4tb00922c

    Article  Google Scholar 

  47. Petta D, Fussell G, Hughes L et al. (2016) Calcium phosphate/thermoresponsive hyaluronan hydrogel composite delivering hydrophilic and hydrophobic drugs. J Orthop Transl 5:57–68. https://doi.org/10.1016/j.jot.2015.11.001

    Article  Google Scholar 

  48. Park JW, Jang JH, Lee CS, Hanawa T (2009) Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomater 5:2311–2321. https://doi.org/10.1016/j.actbio.2009.02.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from CNPq (305013/2017-3 and 301423/2018-0), CAPES (PROEX), and FAPEMIG (APQ-01881-18). The UFMG Microscopy Center is acknowledged for the support given in SEM. We also thank Samuel Lima, Ilda Batista, Luiz Oliveira, and Victor Araújo for the support provided in XRD, N2 adsorption, FTIR, and DSC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raquel Luiza Mageste Fonseca, Eduardo Henrique Martins Nunes or Manuel Houmard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, R.L.M., de Souza Gonçalves, B., Balarini, J.C. et al. Deliquescent behavior of calcium phosphate materials synthesized by sol–gel technique. J Sol-Gel Sci Technol 97, 404–413 (2021). https://doi.org/10.1007/s10971-020-05425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05425-6

Keywords

Navigation