Skip to main content

Advertisement

Log in

The effect of MgO addition on the properties of alumina-based ceramic cores prepared via sol–gel process

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Alumina-based ceramic cores with MgO addition were prepared using sol–gel process. Prior to magnesia addition, the suitable amount of titania content was determined in the previous research, where it was found that the body with 15 wt% titania had the most suitable properties. The effect of magnesia addition on mechanical, physical, thermal, chemical, and microstructural properties of the cores was investigated through adding MgTi2O5 and sintering the bodies at two temperatures (1400 and 1500 °C) for two different soaking times (1 and 2 h). According to the results of flexural strength test, apparent porosity measurement, leaching test, and microstructural properties of the sintered bodies, the body which contained 15 wt% titania and 4 wt% magnesia had the least sintering shrinkage (~2%), suitable apparent porosity (~30%), acceptable flexural strength (40 MPa), good thermal expansion coefficient (~4.3 × 106 °C−1), and also exhibited a suitable leaching behavior.

Highlights

  • MgO containing alumina-based ceramic cores were fabricated using non-toxic raw materials and without de-airing step by sol-gel method.

  • Flexural strength, apparent porosity, leaching characteristics, and microstructural properties of the alumina cores were investigated.

  • MgO was added to the precursor powders by different amounts of synthesized MgTi2O5 powder and the optimum MgO content was investigated.

  • Alumina core containing 4 wt% Magnesia exhibited minimum sintering shrinkage, apparent porosity of 30%, flexural strength of 40 MPa, thermal expansion coefficient of 4.3 × 10−6 °C−1 and acceptable leaching properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pradyumna R (2012) Ceramic cores for turbine blades: a tooling perspective. Int J Mech Ind Eng 2:2231–6477

    Google Scholar 

  2. Zhou PP, Wu GQ, Tao Y et al. (2018) Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting. Mater Res Express 5:025202–025211

    Article  Google Scholar 

  3. Wereszczak AA, Breder K, Ferber MK et al. (2002) Dimensional changes and creep of silica core ceramics used in investment casting of superalloys. J Mater Sci 37:4235–4245. https://doi.org/10.1023/A:1020060508311

    Article  CAS  Google Scholar 

  4. Qin Y, Pan W (2010) A model alumina based investment casting ceramic core body system. J Mater Sci Eng Adv Technol 2:11–25

    Google Scholar 

  5. Maki R, Suzuki Y (2013) Microstructure and mechanical properties of MgO-doped Al2TiO5 prepared by reactive sintering. J Ceram Soc Jpn 121:568–571

    Article  CAS  Google Scholar 

  6. Kazemi A, Faghihi-Sani MA, Alizadeh HR (2013) Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting. J Eur Ceram Soc 33:3397–3402. https://doi.org/10.1016/j.jeurceramsoc.2013.06.025

    Article  CAS  Google Scholar 

  7. Manivannan R, Kumar A, Subrahmanyam C (2013) Aqueous gelcasting of fused silica using colloidal silica binder. J Am Ceram Soc 96:2432–2436. https://doi.org/10.1111/jace.12448

    Article  CAS  Google Scholar 

  8. Wang F, Li F, He B et al. (2013) Gel-casting of fused silica based core packing for investment casting using silica sol as a binder. J Eur Ceram Soc 33:2745–2749. https://doi.org/10.1016/j.jeurceramsoc.2013.04.002

    Article  CAS  Google Scholar 

  9. Qin Y, Pan W (2009) Effect of silica sol on the properties of alumina-based ceramic core composites. Mater Sci Eng A 508:71–75. https://doi.org/10.1016/j.msea.2008.12.016

    Article  CAS  Google Scholar 

  10. Wu HH, Li DC, Tang YP et al. (2011) Improving high temperature properties of alumina based ceramic cores containing yttria by vacuum impregnating. Mater Sci Technol 27:823–828. https://doi.org/10.1179/026708309X12506933873062

    Article  CAS  Google Scholar 

  11. Low IM, Lim FW, Low SS (1993) Synthesis of highly leachable gel-derived alumina ceramic cores. J Mater Sci Lett 12:1570–1573. https://doi.org/10.1007/BF00627016

    Article  CAS  Google Scholar 

  12. Kazemi A, Faghihi-Sani MA, Nayyeri MJ et al. (2014) Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores. Ceram Int 40:1093–1098. https://doi.org/10.1016/j.ceramint.2013.06.108

    Article  CAS  Google Scholar 

  13. Frank GR, Canfield KA, Wright TR (1987) Alumina-based core containing yttria. Howmet Corp. United States Patents 4837187A

  14. Raharjo J, Rahayu S, Mustika T et al. (2015) Effect of TiO2 and MgO on microstructure of α-alumina ceramics and its sintering behavior. Adv Mater Res 1112:519–523. https://doi.org/10.4028/www.scientific.net/AMR.1112.519

    Article  Google Scholar 

  15. Wang D, Ismail NF, Badarulzaman NA (2012) Effect of MgO additive on microstructure of Al2O3. Adv Mater Res 488–489:335–339. https://doi.org/10.4028/www.scientific.net/AMR.488-489.335

    Article  CAS  Google Scholar 

  16. Chao CH, Lu HY (2002) Optimal composition of zircon—fused silica ceramic cores for casting superalloys. J Am Ceram Soc 79:773–779. https://doi.org/10.1111/j.1151-2916.2002.tb00171.x

    Article  Google Scholar 

  17. Shah DN, Beals JT, Marcin Jr JJ, Murray SD (2003) Cores for use in precision investment casting. Sherwood Refractories Inc. United States Patents 4093017A

  18. Kryachek VM (2004) Injection moulding (review). Powder Metall Met Ceram 43:336–348. https://doi.org/10.1023/B:PMMC.0000048127.24809.d3

    Article  CAS  Google Scholar 

  19. Shabani S, Naghizadeh R, Golestanifard F et al. (2019) Effect of TiO2 addition on microstructure and mechanical properties of alumina-based cores prepared by sol-gel method. Int J Appl Ceram Technol 16:2409–2418. https://doi.org/10.1111/ijac.13268

    Article  CAS  Google Scholar 

  20. Liu F, Fan Z, Liu X et al. (2016) Aqueous gel casting of water-soluble calcia-based ceramic core for investment casting using epoxy resin as a binder. Int J Adv Manuf Technol 86:1235–1242. https://doi.org/10.1007/s00170-015-8227-3

    Article  Google Scholar 

  21. Wei N, Guan Y, Wu H et al. (2016) Fabrication of Yb3+-doped YAG transparent ceramics by aqueous gelcasting. J Sol-Gel Sci Technol 77:211–217. https://doi.org/10.1007/s10971-015-3846-6

    Article  CAS  Google Scholar 

  22. Dhara S, Kamboj RK, Pradhan M, Bhargava P (2002) Shape forming of ceramics via gelcasting of aqueous particulate slurries. Bull Mater Sci 25:565–568. https://doi.org/10.1007/BF02710552

    Article  CAS  Google Scholar 

  23. Omatete OO, Janney MA, Nunn SD (1997) Gelcasting: from laboratory development toward industrial production. J Eur Ceram Soc 17:407–413. https://doi.org/10.1016/S0955-2219(96)00147-1

    Article  Google Scholar 

  24. Wan W, Yang J, Zeng J, Qiu T (2013) Gelcasting of fused silica glass using a low-toxicity monomer DMAA. J Non Cryst Solids 379:229–234. https://doi.org/10.1016/j.jnoncrysol.2013.08.017

    Article  CAS  Google Scholar 

  25. Tang Y, Ji Z, Jia C et al. (2016) Effect of particle size on non-aqueous gel-casting process for copper powder. J Sol-Gel Sci Technol 79:530–534. https://doi.org/10.1007/s10971-016-4159-0

    Article  CAS  Google Scholar 

  26. Crisan M, Zaharescu M, Jitianu A, Crisan D (2000) Sol-gel poly-component nano-sized oxide powders. J Sol-Gel Sci Technol 19:409–412

    Article  CAS  Google Scholar 

  27. Watchman JB, Cannon WR, Matthewon MJ (2009) Mechanical properties of ceramics, second edn. Wiley, New Jersey

  28. Kong D, Yang H, Wei S et al. (2007) Gel-casting without de-airing process using silica sol as a binder. Ceram Int 33:133–139. https://doi.org/10.1016/j.ceramint.2005.08.006

    Article  CAS  Google Scholar 

  29. Kong D, Yang H, Yang Y et al. (2007) De-stabilization mechanism and in situ solidification of alumina slurry dispersed in silica sol. J Mater Process Technol 182:489–497. https://doi.org/10.1016/j.jmatprotec.2006.09.008

    Article  CAS  Google Scholar 

  30. Zhu X, Jiang D, Tan S, Zhang Z (2001) Dispersion properties of alumina powders in silica sol. J Eur Ceram Soc 21:2879–2885. https://doi.org/10.1016/S0955-2219(01)00229-1

    Article  CAS  Google Scholar 

  31. Buscaglia V, Caracciolo F, Leoni M et al. (1997) Synthesis, sintering and expansion of resistant to thermal decomposition. J Mater Sci 32:6525–6531. https://doi.org/10.1023/A:1018611311015

    Article  CAS  Google Scholar 

  32. Roinne A, Mansikka J, Bjorklund P (1974–2006) HSC Chemistry, Thermodynamic software

  33. Xu G, Tu C, Weng W et al. (2007) Synthesis of aluminum titanate solid solution by solid state reaction of fine commercial Al2O3, TiO2, and MgO powders. Key Eng Mater 336–338:1327–1330. https://doi.org/10.4028/www.scientific.net/KEM.336-338.1327

    Article  Google Scholar 

  34. Suzuki Y, Shinoda Y (2011) Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review. Sci Technol Adv Mater 12:034301–034306. https://doi.org/10.1088/1468-6996/12/3/034301

    Article  CAS  Google Scholar 

  35. Suzuki Y, Morimoto M (2010) Uniformly porous MgTi2O5 with narrow pore-size distribution: in situ processing, microstructure and thermal expansion behavior. J Ceram Soc Jpn 118:1212–1216

    Article  CAS  Google Scholar 

  36. Kim D, Kim H, Kim H et al. (2014) Mechanical properties of Al2TiO5 ceramics for high temperature application. Curr Nanosci 10:154–158. https://doi.org/10.2174/1573413709666131109005012

    Article  CAS  Google Scholar 

  37. Ziegler G (1985) Microstructural aspects of thermal stress resistance of high-strength engineering ceramics* part I: data of thermal stress resistance of high-strength engineering ceramics. Mater Sci Eng Technol 16:12–18

    CAS  Google Scholar 

  38. Aball S (2011) Effect of TiO2 doping on microstructural properties of Al2O3-based single crystal ceramics. J Ceram Process Res 12:21–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Naghizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, S., Naghizadeh, R., Fallah Vostakola, M. et al. The effect of MgO addition on the properties of alumina-based ceramic cores prepared via sol–gel process. J Sol-Gel Sci Technol 96, 539–549 (2020). https://doi.org/10.1007/s10971-020-05300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05300-4

Keywords

Navigation